These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17061258)

  • 21. Transplantation of bone marrow stromal cell-derived Schwann cells promotes axonal regeneration and functional recovery after complete transection of adult rat spinal cord.
    Kamada T; Koda M; Dezawa M; Yoshinaga K; Hashimoto M; Koshizuka S; Nishio Y; Moriya H; Yamazaki M
    J Neuropathol Exp Neurol; 2005 Jan; 64(1):37-45. PubMed ID: 15715083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonspecific association of 2',3'-cyclic nucleotide 3'-phosphodiesterase with the rat forebrain postsynaptic density fraction.
    Cho SJ; Jung JS; Shin SC; Jin I; Ko BH; Kim Kwon Y; Suh-Kim H; Moon IS
    Exp Mol Med; 2003 Dec; 35(6):486-93. PubMed ID: 14749525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury.
    Ji JF; He BP; Dheen ST; Tay SS
    Stem Cells; 2004; 22(3):415-27. PubMed ID: 15153618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases.
    Son BR; Marquez-Curtis LA; Kucia M; Wysoczynski M; Turner AR; Ratajczak J; Ratajczak MZ; Janowska-Wieczorek A
    Stem Cells; 2006 May; 24(5):1254-64. PubMed ID: 16410389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transplantation of bone marrow stromal cell-derived neural precursor cells ameliorates deficits in a rat model of complete spinal cord transection.
    Aizawa-Kohama M; Endo T; Kitada M; Wakao S; Sumiyoshi A; Matsuse D; Kuroda Y; Morita T; Riera JJ; Kawashima R; Tominaga T; Dezawa M
    Cell Transplant; 2013; 22(9):1613-25. PubMed ID: 23127893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuroprotective and growth-promoting effects of bone marrow stromal cells after cervical spinal cord injury in adult rats.
    Novikova LN; Brohlin M; Kingham PJ; Novikov LN; Wiberg M
    Cytotherapy; 2011 Aug; 13(7):873-87. PubMed ID: 21521004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma.
    Geminder H; Sagi-Assif O; Goldberg L; Meshel T; Rechavi G; Witz IP; Ben-Baruch A
    J Immunol; 2001 Oct; 167(8):4747-57. PubMed ID: 11591806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical stretch upregulates SDF-1α in skin tissue and induces migration of circulating bone marrow-derived stem cells into the expanded skin.
    Zhou SB; Wang J; Chiang CA; Sheng LL; Li QF
    Stem Cells; 2013 Dec; 31(12):2703-13. PubMed ID: 23836581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combination of bone marrow stromal cell transplantation with mobilization by granulocyte-colony stimulating factor promotes functional recovery after spinal cord transection.
    Luo J; Zhang HT; Jiang XD; Xue S; Ke YQ
    Acta Neurochir (Wien); 2009 Nov; 151(11):1483-92. PubMed ID: 19499175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simvastatin mobilizes bone marrow stromal cells migrating to injured areas and promotes functional recovery after spinal cord injury in the rat.
    Han X; Yang N; Cui Y; Xu Y; Dang G; Song C
    Neurosci Lett; 2012 Jul; 521(2):136-41. PubMed ID: 22683506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Schwann cell coculture improves the therapeutic effect of bone marrow stromal cells on recovery in spinal cord-injured mice.
    Xu X; Geremia N; Bao F; Pniak A; Rossoni M; Brown A
    Cell Transplant; 2011; 20(7):1065-86. PubMed ID: 21092402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transplanted bone marrow stromal cells promote axonal regeneration and improve motor function in a rat spinal cord injury model.
    Chiba Y; Kuroda S; Maruichi K; Osanai T; Hokari M; Yano S; Shichinohe H; Hida K; Iwasaki Y
    Neurosurgery; 2009 May; 64(5):991-9; discussion 999-1000. PubMed ID: 19404159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury.
    Shi W; Huang CJ; Xu XD; Jin GH; Huang RQ; Huang JF; Chen YN; Ju SQ; Wang Y; Shi YW; Qin JB; Zhang YQ; Liu QQ; Wang XB; Zhang XH; Chen J
    Acta Biomater; 2016 Nov; 45():247-261. PubMed ID: 27592818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of chemokines on the properties of spinal cord-derived neural progenitor cells in a rat spinal cord lesion model.
    Knerlich-Lukoschus F; Krossa S; Krause J; Mehdorn HM; Scheidig A; Held-Feindt J
    J Neurosci Res; 2015 Apr; 93(4):562-71. PubMed ID: 25491360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury.
    Lu P; Jones LL; Tuszynski MH
    Exp Neurol; 2005 Feb; 191(2):344-60. PubMed ID: 15649491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electroacupuncture promotes the differentiation of transplanted bone marrow mesenchymal stem cells overexpressing TrkC into neuron-like cells in transected spinal cord of rats.
    Ding Y; Yan Q; Ruan JW; Zhang YQ; Li WJ; Zeng X; Huang SF; Zhang YJ; Wu JL; Fisher D; Dong H; Zeng YS
    Cell Transplant; 2013; 22(1):65-86. PubMed ID: 23006476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo phosphorylation of 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP): CNP in brain myelin is phosphorylated by forskolin- and phorbol ester-sensitive protein kinases.
    Agrawal HC; Sprinkle TJ; Agrawal D
    Neurochem Res; 1994 Jun; 19(6):721-8. PubMed ID: 8065530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury.
    Stewart AN; Matyas JJ; Welchko RM; Goldsmith AD; Zeiler SE; Hochgeschwender U; Lu M; Nan Z; Rossignol J; Dunbar GL
    Restor Neurol Neurosci; 2017; 35(4):395-411. PubMed ID: 28598857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of glial transplantation on functional recovery following acute spinal cord injury.
    Lee KH; Yoon DH; Park YG; Lee BH
    J Neurotrauma; 2005 May; 22(5):575-89. PubMed ID: 15892602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.