BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17061827)

  • 1. Development of NIRS equations for food grain quality traits through exploitation of a core collection of cultivated sorghum.
    de Alencar Figueiredo LF; Davrieux F; Fliedel G; Rami JF; Chantereau J; Deu M; Courtois B; Mestres C
    J Agric Food Chem; 2006 Nov; 54(22):8501-9. PubMed ID: 17061827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Measuring fatty acid concentration in maize grain by near-infrared reflectance spectroscopy].
    Yang XH; Guo YQ; Fu Y; Hu JY; Chai YC; Zhang YR; Li JS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):106-9. PubMed ID: 19385216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of maize germplasm for the chemical composition of the grain.
    Berardo N; Mazzinelli G; Valoti P; Laganà P; Redaelli R
    J Agric Food Chem; 2009 Mar; 57(6):2378-84. PubMed ID: 19249819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nondestructive prediction of total phenolics, flavonoid contents, and antioxidant capacity of rice grain using near-infrared spectroscopy.
    Zhang C; Shen Y; Chen J; Xiao P; Bao J
    J Agric Food Chem; 2008 Sep; 56(18):8268-72. PubMed ID: 18729464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the nutrient metal content in Chinese animal manure compost using near infrared spectroscopy (NIRS).
    Huang G; Han L; Yang Z; Wang X
    Bioresour Technol; 2008 Nov; 99(17):8164-9. PubMed ID: 18440809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid determination of the content of digestible energy and metabolizable energy in sorghum fed to growing pigs by near-infrared reflectance spectroscopy1.
    Hu J; Li J; Pan L; Piao X; Sui L; Xie G; Zhang S; Zhang L; Wang J
    J Anim Sci; 2019 Dec; 97(12):4855-4864. PubMed ID: 31679021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating hydrogen cyanide in forage sorghum ( Sorghum bicolor ) by near-infrared spectroscopy.
    Fox GP; O'Donnell NH; Stewart PN; Gleadow RM
    J Agric Food Chem; 2012 Jun; 60(24):6183-7. PubMed ID: 22594883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near infrared spectroscopy for high-throughput characterization of Shea tree (Vitellaria paradoxa) nut fat profiles.
    Davrieux F; Allal F; Piombo G; Kelly B; Okulo JB; Thiam M; Diallo OB; Bouvet JM
    J Agric Food Chem; 2010 Jul; 58(13):7811-9. PubMed ID: 20518501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of acid-detergent fiber and crude protein in forages by near-infrared reflectance spectroscopy: collaborative study.
    Barton FE; Windham WR
    J Assoc Off Anal Chem; 1988; 71(6):1162-7. PubMed ID: 2853700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of grain quality in diverse sorghum germplasm using a Rapid Visco-Analyzer and near infrared reflectance spectroscopy.
    Shewayrga H; Sopade PA; Jordan DR; Godwin ID
    J Sci Food Agric; 2012 May; 92(7):1402-10. PubMed ID: 22131220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nondestructive determination of oil content and fatty acid composition in perilla seeds by near-infrared spectroscopy.
    Kim KS; Park SH; Choung MG
    J Agric Food Chem; 2007 Mar; 55(5):1679-85. PubMed ID: 17288449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Global" and "local" predictions of dairy diet nutritional quality using near infrared reflectance spectroscopy.
    Tran H; Salgado P; Tillard E; Dardenne P; Nguyen XT; Lecomte P
    J Dairy Sci; 2010 Oct; 93(10):4961-75. PubMed ID: 20855031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimisation of near-infrared reflectance model in measuring protein and amylose content of rice flour.
    Xie LH; Tang SQ; Chen N; Luo J; Jiao GA; Shao GN; Wei XJ; Hu PS
    Food Chem; 2014 Jan; 142():92-100. PubMed ID: 24001817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of LOCAL algorithm with near-infrared spectroscopy for compliance assurance in compound feedingstuffs.
    Pérez-Marín D; Garrido-Varo A; Guerrero JE
    Appl Spectrosc; 2005 Jan; 59(1):69-77. PubMed ID: 15720740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A near infrared spectroscopic assay for stalk soluble sugars, bagasse enzymatic saccharification and wall polymers in sweet sorghum.
    Wu L; Li M; Huang J; Zhang H; Zou W; Hu S; Li Y; Fan C; Zhang R; Jing H; Peng L; Feng S
    Bioresour Technol; 2015 Feb; 177():118-24. PubMed ID: 25484122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of fatty acids in forages by near-infrared reflectance spectroscopy.
    Foster JG; Clapham WM; Fedders JM
    J Agric Food Chem; 2006 May; 54(9):3186-92. PubMed ID: 16637670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of diode-array instruments to carry near-infrared spectroscopy from laboratory to feed process control.
    Fernández-Ahumada E; Garrido-Varo A; Guerrero-Ginel JE
    J Agric Food Chem; 2008 May; 56(9):3185-92. PubMed ID: 18407654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability of grain quality in sorghum: association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2.
    Figueiredo LF; Sine B; Chantereau J; Mestres C; Fliedel G; Rami JF; Glaszmann JC; Deu M; Courtois B
    Theor Appl Genet; 2010 Oct; 121(6):1171-85. PubMed ID: 20567801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of near-infrared spectroscopy for determining the total arsenic content in prostrate amaranth.
    Font R; Del Río M; Vélez D; Montoro R; De Haro A
    Sci Total Environ; 2004 Jul; 327(1-3):93-104. PubMed ID: 15172574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of grain topography on near infrared hyperspectral images.
    Manley M; McGoverin CM; Engelbrecht P; Geladi P
    Talanta; 2012 Jan; 89():223-30. PubMed ID: 22284484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.