These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 17061920)

  • 21. List-decoding methods for inferring polynomials in finite dynamical gene network models.
    Dingel J; Milenkovic O
    Bioinformatics; 2009 Jul; 25(13):1686-93. PubMed ID: 19401400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionary algorithm for metabolic pathways synthesis.
    Gerard MF; Stegmayer G; Milone DH
    Biosystems; 2016 Jun; 144():55-67. PubMed ID: 27080162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Replaying the evolutionary tape: biomimetic reverse engineering of gene networks.
    Marbach D; Mattiussi C; Floreano D
    Ann N Y Acad Sci; 2009 Mar; 1158():234-45. PubMed ID: 19348645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Guaranteed error bounds for structured complexity reduction of biochemical networks.
    Prescott TP; Papachristodoulou A
    J Theor Biol; 2012 Jul; 304():172-82. PubMed ID: 22554951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pathway identification by network pruning in the metabolic network of Escherichia coli.
    Gerlee P; Lizana L; Sneppen K
    Bioinformatics; 2009 Dec; 25(24):3282-8. PubMed ID: 19808881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A stochastic model for the evolution of metabolic networks with neighbor dependence.
    Mithani A; Preston GM; Hein J
    Bioinformatics; 2009 Jun; 25(12):1528-35. PubMed ID: 19376826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using flux balance analysis to guide microbial metabolic engineering.
    Curran KA; Crook NC; Alper HS
    Methods Mol Biol; 2012; 834():197-216. PubMed ID: 22144361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterising neurological time series data using biologically motivated networks of coupled discrete maps.
    Lones MA; Smith SL; Tyrrell AM; Alty JE; Jamieson DR
    Biosystems; 2013 May; 112(2):94-101. PubMed ID: 23499822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.
    Floares AG
    Neural Netw; 2008; 21(2-3):379-86. PubMed ID: 18243654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing methods for metabolic network analysis and an application to metabolic engineering.
    Tomar N; De RK
    Gene; 2013 May; 521(1):1-14. PubMed ID: 23537990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling complex metabolic reactions, ecological systems, and financial and legal networks with MIANN models based on Markov-Wiener node descriptors.
    Duardo-Sánchez A; Munteanu CR; Riera-Fernández P; López-Díaz A; Pazos A; González-Díaz H
    J Chem Inf Model; 2014 Jan; 54(1):16-29. PubMed ID: 24320872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DREAMS of metabolism.
    Soh KC; Hatzimanikatis V
    Trends Biotechnol; 2010 Oct; 28(10):501-8. PubMed ID: 20727603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate multiple network alignment through context-sensitive random walk.
    Jeong H; Yoon BJ
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S7. PubMed ID: 25707987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EXAMINE: a computational approach to reconstructing gene regulatory networks.
    Deng X; Geng H; Ali H
    Biosystems; 2005 Aug; 81(2):125-36. PubMed ID: 15951103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ReTRN: a retriever of real transcriptional regulatory network and expression data for evaluating structure learning algorithm.
    Li Y; Zhu Y; Bai X; Cai H; Ji W; Guo D
    Genomics; 2009 Nov; 94(5):349-54. PubMed ID: 19712740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconstruction of gene regulatory networks under the finite state linear model.
    Ruklisa D; Brazma A; Viksna J
    Genome Inform; 2005; 16(2):225-36. PubMed ID: 16901105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. STEPP--Search Tool for Exploration of Petri net Paths: a new tool for Petri net-based path analysis in biochemical networks.
    Koch I; Schueler M; Heiner M
    In Silico Biol; 2005; 5(2):129-37. PubMed ID: 15972017
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting novel pathways in genome-scale metabolic networks.
    Schuster S; de Figueiredo LF; Kaleta C
    Biochem Soc Trans; 2010 Oct; 38(5):1202-5. PubMed ID: 20863284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Method for Finding Metabolic Pathways Using Atomic Group Tracking.
    Huang Y; Zhong C; Lin HX; Wang J
    PLoS One; 2017; 12(1):e0168725. PubMed ID: 28068354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of regulatory structure and kinetic parameters of biochemical networks via mixed-integer dynamic optimization.
    Guillén-Gosálbez G; Miró A; Alves R; Sorribas A; Jiménez L
    BMC Syst Biol; 2013 Oct; 7():113. PubMed ID: 24176044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.