BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17061979)

  • 41. Inhibition of chronic myelogenous leukemia cells harboring a BCR-ABL B3A2 junction by antisense oligonucleotides targeted at the B2A2 junction.
    Mahon FX; Ripoche J; Pigeonnier V; Jazwiec B; Pigneux A; Moreau JF; Reiffers J
    Exp Hematol; 1995 Dec; 23(14):1606-11. PubMed ID: 8542954
    [TBL] [Abstract][Full Text] [Related]  

  • 42. BCR-ABL1 tyrosine kinase sustained MECOM expression in chronic myeloid leukaemia.
    Roy S; Jørgensen HG; Roy P; Abed El Baky M; Melo JV; Strathdee G; Holyoake TL; Bartholomew C
    Br J Haematol; 2012 May; 157(4):446-56. PubMed ID: 22372463
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein tyrosine phosphatase receptor type {gamma} is a functional tumor suppressor gene specifically downregulated in chronic myeloid leukemia.
    Della Peruta M; Martinelli G; Moratti E; Pintani D; Vezzalini M; Mafficini A; Grafone T; Iacobucci I; Soverini S; Murineddu M; Vinante F; Tecchio C; Piras G; Gabbas A; Monne M; Sorio C
    Cancer Res; 2010 Nov; 70(21):8896-906. PubMed ID: 20959494
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gene expression analysis of BCR/ABL1-dependent transcriptional response reveals enrichment for genes involved in negative feedback regulation.
    Håkansson P; Nilsson B; Andersson A; Lassen C; Gullberg U; Fioretos T
    Genes Chromosomes Cancer; 2008 Apr; 47(4):267-75. PubMed ID: 18181176
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Expression patterns of costimulatory molecules on cells derived from human hematological malignancies.
    Zheng Z; Takahashi M; Aoki S; Toba K; Liu A; Osman Y; Takahashi H; Tsukada N; Suzuki N; Nikkuni K; Furukawa T; Koike T; Aizawa Y
    J Exp Clin Cancer Res; 1998 Sep; 17(3):251-8. PubMed ID: 9894758
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-cell analysis of K562 cells: an imatinib-resistant subpopulation is adherent and has upregulated expression of BCR-ABL mRNA and protein.
    Karimiani EG; Marriage F; Merritt AJ; Burthem J; Byers RJ; Day PJ
    Exp Hematol; 2014 Mar; 42(3):183-191.e5. PubMed ID: 24269846
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of P210bcr-abl tyrosine protein kinase activity in various subtypes of Philadelphia chromosome-positive cells from chronic myelogenous leukemia patients.
    Maxwell SA; Kurzrock R; Parsons SJ; Talpaz M; Gallick GE; Kloetzer WS; Arlinghaus RB; Kouttab NM; Keating MJ; Gutterman JU
    Cancer Res; 1987 Mar; 47(6):1731-9. PubMed ID: 2434223
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid isolation of translocation breakpoints in chronic myeloid and acute promyelocytic leukaemia.
    Bartley PA; Martin-Harris MH; Budgen BJ; Ross DM; Morley AA
    Br J Haematol; 2010 Apr; 149(2):231-6. PubMed ID: 20067557
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The minute chromosome (Phl) in chronic granulocytic leukemia.
    NOWELL PC
    Blut; 1962 Apr; 8():65-6. PubMed ID: 14480647
    [No Abstract]   [Full Text] [Related]  

  • 50. High constitutive expression of heat shock protein 90 alpha in human acute leukemia cells.
    Yufu Y; Nishimura J; Nawata H
    Leuk Res; 1992; 16(6-7):597-605. PubMed ID: 1635378
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cluster-Rasch models for microarray gene expression data.
    Li H; Hong F
    Genome Biol; 2001; 2(8):RESEARCH0031. PubMed ID: 11532215
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differences among the polyadenylated RNA sequences of human leucocyte populations: an approach to the objective classification of human leukaemias.
    Wiedemann LM; Burns JH; Birnie GD
    EMBO J; 1983; 2(1):9-13. PubMed ID: 11894916
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Immunocytochemical detection of p21ras expression in fresh human leukaemic cells and cell lines.
    Neubauer A; Herbst H; Rochlitz C; Siegert W; Schmidt CA; Huhn D
    Blut; 1989 Nov; 59(5):460-3. PubMed ID: 2684300
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Altered expression of the human retinoblastoma gene in monocytic leukaemias.
    Weide R; Parviz B; Pflüger KH; Havemann K
    Br J Haematol; 1993 Mar; 83(3):428-32. PubMed ID: 8485048
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gene profiling of the erythro- and megakaryoblastic leukaemias induced by the Graffi murine retrovirus.
    Voisin V; Legault P; Ospina DP; Ben-David Y; Rassart E
    BMC Med Genomics; 2010 Jan; 3():2. PubMed ID: 20102610
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Compositional analysis gives insight into leukaemia cell lines expression profiles compared to those within patient sub-groups.
    Blayney JK; Mills KI
    Br J Haematol; 2018 Jun; 181(6):847-851. PubMed ID: 28653436
    [No Abstract]   [Full Text] [Related]  

  • 57. Leukaemic lesions of the gastrointestinal tract.
    CORNES JS; JONES TG
    J Clin Pathol; 1962 Jul; 15(4):305-13. PubMed ID: 13881389
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A case of acute monocytic leukaemia.
    CLEAVE TL
    J R Nav Med Serv; 1951; 37(4):215-6. PubMed ID: 14881142
    [No Abstract]   [Full Text] [Related]  

  • 59. Acute monocytic leukaemia.
    SEN SN; DAS GL
    J Indian Med Assoc; 1959 Sep; 33():227-9. PubMed ID: 14444865
    [No Abstract]   [Full Text] [Related]  

  • 60. Monocytic leukaemia; report of a case showing unusual features.
    PORTER R; WOODLIFF HJ
    Acta Haematol; 1959 Feb; 21(2):118-28. PubMed ID: 13626513
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.