These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 17062158)
1. Nuclear envelope transmembrane proteins (NETs) that are up-regulated during myogenesis. Chen IH; Huber M; Guan T; Bubeck A; Gerace L BMC Cell Biol; 2006 Oct; 7():38. PubMed ID: 17062158 [TBL] [Abstract][Full Text] [Related]
2. Regulation of myoblast differentiation by the nuclear envelope protein NET39. Liu GH; Guan T; Datta K; Coppinger J; Yates J; Gerace L Mol Cell Biol; 2009 Nov; 29(21):5800-12. PubMed ID: 19704009 [TBL] [Abstract][Full Text] [Related]
3. Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations. Wilkie GS; Korfali N; Swanson SK; Malik P; Srsen V; Batrakou DG; de las Heras J; Zuleger N; Kerr AR; Florens L; Schirmer EC Mol Cell Proteomics; 2011 Jan; 10(1):M110.003129. PubMed ID: 20876400 [TBL] [Abstract][Full Text] [Related]
4. Overlapping functions of nuclear envelope proteins NET25 (Lem2) and emerin in regulation of extracellular signal-regulated kinase signaling in myoblast differentiation. Huber MD; Guan T; Gerace L Mol Cell Biol; 2009 Nov; 29(21):5718-28. PubMed ID: 19720741 [TBL] [Abstract][Full Text] [Related]
5. Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. Zhang Q; Skepper JN; Yang F; Davies JD; Hegyi L; Roberts RG; Weissberg PL; Ellis JA; Shanahan CM J Cell Sci; 2001 Dec; 114(Pt 24):4485-98. PubMed ID: 11792814 [TBL] [Abstract][Full Text] [Related]
6. Loss of emerin at the nuclear envelope disrupts the Rb1/E2F and MyoD pathways during muscle regeneration. Melcon G; Kozlov S; Cutler DA; Sullivan T; Hernandez L; Zhao P; Mitchell S; Nader G; Bakay M; Rottman JN; Hoffman EP; Stewart CL Hum Mol Genet; 2006 Feb; 15(4):637-51. PubMed ID: 16403804 [TBL] [Abstract][Full Text] [Related]
7. Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. Zhang Q; Ragnauth CD; Skepper JN; Worth NF; Warren DT; Roberts RG; Weissberg PL; Ellis JA; Shanahan CM J Cell Sci; 2005 Feb; 118(Pt 4):673-87. PubMed ID: 15671068 [TBL] [Abstract][Full Text] [Related]
8. NET37, a nuclear envelope transmembrane protein with glycosidase homology, is involved in myoblast differentiation. Datta K; Guan T; Gerace L J Biol Chem; 2009 Oct; 284(43):29666-76. PubMed ID: 19706595 [TBL] [Abstract][Full Text] [Related]
9. Tissue-Specific Gene Repositioning by Muscle Nuclear Membrane Proteins Enhances Repression of Critical Developmental Genes during Myogenesis. Robson MI; de Las Heras JI; Czapiewski R; Lê Thành P; Booth DG; Kelly DA; Webb S; Kerr ARW; Schirmer EC Mol Cell; 2016 Jun; 62(6):834-847. PubMed ID: 27264872 [TBL] [Abstract][Full Text] [Related]
10. Palmdelphin promotes myoblast differentiation and muscle regeneration. Nie Y; Chen H; Guo C; Yuan Z; Zhou X; Zhang Y; Zhang X; Mo D; Chen Y Sci Rep; 2017 Feb; 7():41608. PubMed ID: 28148961 [TBL] [Abstract][Full Text] [Related]
11. Analysis of Nuclear Lamina Proteins in Myoblast Differentiation by Functional Complementation. Tapia O; Gerace L Methods Mol Biol; 2016; 1411():177-94. PubMed ID: 27147042 [TBL] [Abstract][Full Text] [Related]
12. Analysis of early C2C12 myogenesis identifies stably and differentially expressed transcriptional regulators whose knock-down inhibits myoblast differentiation. Rajan S; Chu Pham Dang H; Djambazian H; Zuzan H; Fedyshyn Y; Ketela T; Moffat J; Hudson TJ; Sladek R Physiol Genomics; 2012 Feb; 44(2):183-97. PubMed ID: 22147266 [TBL] [Abstract][Full Text] [Related]
13. Remodelling of the nuclear lamina and nucleoskeleton is required for skeletal muscle differentiation in vitro. Markiewicz E; Ledran M; Hutchison CJ J Cell Sci; 2005 Jan; 118(Pt 2):409-20. PubMed ID: 15654018 [TBL] [Abstract][Full Text] [Related]
14. Tail-anchored membrane protein SLMAP3 is essential for targeting centrosomal proteins to the nuclear envelope in skeletal myogenesis. Dias AP; Rehmani T; Salih M; Tuana B Open Biol; 2024 Oct; 14(10):240094. PubMed ID: 39378988 [TBL] [Abstract][Full Text] [Related]
15. Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C. Mislow JM; Kim MS; Davis DB; McNally EM J Cell Sci; 2002 Jan; 115(Pt 1):61-70. PubMed ID: 11801724 [TBL] [Abstract][Full Text] [Related]
16. A role for β-dystroglycan in the organization and structure of the nucleus in myoblasts. Martínez-Vieyra IA; Vásquez-Limeta A; González-Ramírez R; Morales-Lázaro SL; Mondragón M; Mondragón R; Ortega A; Winder SJ; Cisneros B Biochim Biophys Acta; 2013 Mar; 1833(3):698-711. PubMed ID: 23220011 [TBL] [Abstract][Full Text] [Related]
17. Sarcosin (Krp1) in skeletal muscle differentiation: gene expression profiling and knockdown experiments. du Puy L; Beqqali A; van Tol HT; Monshouwer-Kloots J; Passier R; Haagsman HP; Roelen BA Int J Dev Biol; 2012; 56(4):301-9. PubMed ID: 22562206 [TBL] [Abstract][Full Text] [Related]
18. Glycogenome expression dynamics during mouse C2C12 myoblast differentiation suggests a sequential reorganization of membrane glycoconjugates. Janot M; Audfray A; Loriol C; Germot A; Maftah A; Dupuy F BMC Genomics; 2009 Oct; 10():483. PubMed ID: 19843320 [TBL] [Abstract][Full Text] [Related]
19. Cell-specific and lamin-dependent targeting of novel transmembrane proteins in the nuclear envelope. Malik P; Korfali N; Srsen V; Lazou V; Batrakou DG; Zuleger N; Kavanagh DM; Wilkie GS; Goldberg MW; Schirmer EC Cell Mol Life Sci; 2010 Apr; 67(8):1353-69. PubMed ID: 20091084 [TBL] [Abstract][Full Text] [Related]
20. Identification of novel integral membrane proteins of the nuclear envelope with potential disease links using subtractive proteomics. Schirmer EC; Florens L; Guan T; Yates JR; Gerace L Novartis Found Symp; 2005; 264():63-76; discussion 76-80, 227-30. PubMed ID: 15773748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]