BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 1706224)

  • 1. Modulation of keratin intermediate filament distribution in vivo by induced changes in cyclic AMP-dependent phosphorylation.
    Eckert BS; Yeagle PL
    Cell Motil Cytoskeleton; 1990; 17(4):291-300. PubMed ID: 1706224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acrylamide treatment of PtK1 cells causes dephosphorylation of keratin polypeptides.
    Eckert BS; Yeagle PL
    Cell Motil Cytoskeleton; 1988; 11(1):24-30. PubMed ID: 2463103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of phosphorylation in ethanol-induced aggregation of keratin intermediate filaments.
    Negron G; Eckert BS
    Alcohol Clin Exp Res; 2000 Sep; 24(9):1343-52. PubMed ID: 11003199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [An experimental study of epidermal keratin phosphorylation --epidermal keratin as a substrate protein of cAMP-dependent protein kinase].
    Kobayashi H
    Hokkaido Igaku Zasshi; 1986 May; 61(3):453-62. PubMed ID: 2427426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and protein phosphorylation in the Nb2 lymphoma: effect of prolactin, cAMP, and agents that activate adenylate cyclase.
    Rayhel EJ; Hughes JP; Svihla DA; Prentice DA
    J Cell Biochem; 1990 Aug; 43(4):327-37. PubMed ID: 2168897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration of the distribution of intermediate filaments in PtK1 cells by acrylamide. II: Effect on the organization of cytoplasmic organelles.
    Eckert BS
    Cell Motil Cytoskeleton; 1986; 6(1):15-24. PubMed ID: 3698106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of intermediate filament distribution in PtK1 cells by acrylamide.
    Eckert BS
    Eur J Cell Biol; 1985 May; 37():169-74. PubMed ID: 2411559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of NMDA receptor function by cyclic AMP in cerebellar neurones in culture.
    Llansola M; Sánchez-Pérez AM; Montoliu C; Felipo V
    J Neurochem; 2004 Nov; 91(3):591-9. PubMed ID: 15485490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of the impairment of the glucagon-stimulated phosphoenolpyruvate carboxykinase gene expression by interleukin-6 in rat hepatocytes: inhibition of the increase in cyclic 3',5' adenosine monophosphate and the downstream cyclic 3',5' adenosine monophosphate action.
    Christ B; Nath A; Jungermann K
    Hepatology; 1997 Jul; 26(1):73-80. PubMed ID: 9214454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect inhibition by bradykinin of cyclic AMP generation in isolated rat glomeruli and mesangial cells.
    Bascands JL; Pecher C; Girolami JP
    Mol Pharmacol; 1993 Oct; 44(4):818-26. PubMed ID: 7694069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specificity of ethanol-induced dephosphorylation of rat hepatocyte keratins 8 and 18: A 31P NMR study.
    Eckert BS; Yeagle PL
    Cell Motil Cytoskeleton; 1996; 33(1):30-7. PubMed ID: 8824732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cAMP-mediated signals as determinants for apoptosis in primary granulosa cells.
    Aharoni D; Dantes A; Oren M; Amsterdam A
    Exp Cell Res; 1995 May; 218(1):271-82. PubMed ID: 7537693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serum-induced sensitization of cyclic AMP accumulation in 1321N1 human astrocytoma cells.
    Johnson RA; Arneson-Rotert LJ; Hoffman JM; Toews ML
    Mol Pharmacol; 1991 Mar; 39(3):399-406. PubMed ID: 1706472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pharmacological investigation of the contribution of muscarinic receptor-linked potassium channels to the reversal by carbachol of positive inotropic responses of rabbit left atrium to cyclic AMP-generating agents.
    Ray A; MacLeod KM
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1594-601. PubMed ID: 7690405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of cyclic-AMP on arginase activity by a murine macrophage cell line (RAW264.7) stimulated with lipopolysaccharide from Actinobacillus actinomycetemcomitans.
    Sosroseno W; Musa M; Ravichandran M; Fikri Ibrahim M; Bird PS; Seymour GJ
    Oral Microbiol Immunol; 2006 Dec; 21(6):347-52. PubMed ID: 17064391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative regulation of gamma-globin gene expression by cyclic AMP-dependent pathway in erythroid cells.
    Inoue A; Kuroyanagi Y; Terui K; Moi P; Ikuta T
    Exp Hematol; 2004 Mar; 32(3):244-53. PubMed ID: 15003309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic AMP-dependent protein kinase in Molt 4b lymphoblasts: identification by photoaffinity labeling and activation in intact cells by vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI).
    O'Dorisio MS; Wood CL; Wenger GD; Vassalo LM
    J Immunol; 1985 Jun; 134(6):4078-86. PubMed ID: 2985703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmentation of postconfluence growth arrest of 10T1/2 fibroblasts by endogenous cyclic adenosine 3':5'-monophosphate.
    Matsukawa T; Bertram JS
    Cancer Res; 1988 Apr; 48(7):1874-81. PubMed ID: 2832054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cAMP promotes branching of laminin-induced neuronal processes.
    Weeks BS; Papadopoulos V; Dym M; Kleinman HK
    J Cell Physiol; 1991 Apr; 147(1):62-7. PubMed ID: 1645363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic AMP increasing agents rapidly stimulate vimentin phosphorylation in quiescent cultures of Swiss 3T3 cells.
    Escribano J; Rozengurt E
    J Cell Physiol; 1988 Nov; 137(2):223-34. PubMed ID: 2461373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.