BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17062571)

  • 1. Maize pollen coat xylanase facilitates pollen tube penetration into silk during sexual reproduction.
    Suen DF; Huang AH
    J Biol Chem; 2007 Jan; 282(1):625-36. PubMed ID: 17062571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The predominant protein on the surface of maize pollen is an endoxylanase synthesized by a tapetum mRNA with a long 5' leader.
    Bih FY; Wu SS; Ratnayake C; Walling LL; Nothnagel EA; Huang AH
    J Biol Chem; 1999 Aug; 274(32):22884-94. PubMed ID: 10428875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maize tapetum xylanase is synthesized as a precursor, processed and activated by a serine protease, and deposited on the pollen.
    Wu SS; Suen DF; Chang HC; Huang AH
    J Biol Chem; 2002 Dec; 277(50):49055-64. PubMed ID: 12368281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell wall reactive proteins in the coat and wall of maize pollen: potential role in pollen tube growth on the stigma and through the style.
    Suen DF; Wu SS; Chang HC; Dhugga KS; Huang AH
    J Biol Chem; 2003 Oct; 278(44):43672-81. PubMed ID: 12930826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The maize tapetum employs diverse mechanisms to synthesize and store proteins and flavonoids and transfer them to the pollen surface.
    Li Y; Suen DF; Huang CY; Kung SY; Huang AH
    Plant Physiol; 2012 Apr; 158(4):1548-61. PubMed ID: 22291199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of feruloyl esterases in maize pollen.
    de O Buanafina MM; Fernanda Buanafina M; Laremore T; Shearer EA; Fescemyer HW
    Planta; 2019 Dec; 250(6):2063-2082. PubMed ID: 31576447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in growth and cell wall extensibility of maize silks following pollination.
    Kapu NU; Cosgrove DJ
    J Exp Bot; 2010 Sep; 61(14):4097-107. PubMed ID: 20656797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing enzymatic hydrolysis of xylan by adding sodium lignosulfonate and long-chain fatty alcohols.
    Lou H; Yuan L; Qiu X; Qiu K; Fu J; Pang Y; Huang J
    Bioresour Technol; 2016 Jan; 200():48-54. PubMed ID: 26476164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of xylan on synergistic effects of xylanases and cellulases in enzymatic hydrolysis of lignocelluloses.
    Zhang J; Viikari L
    Appl Biochem Biotechnol; 2014 Oct; 174(4):1393-1402. PubMed ID: 25113551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolyzability of xylan after adsorption on cellulose: Exploration of xylan limitation on enzymatic hydrolysis of cellulose.
    Wang X; Li K; Yang M; Zhang J
    Carbohydr Polym; 2016 Sep; 148():362-70. PubMed ID: 27185150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maize WI5 encodes an endo-1,4-β-xylanase required for secondary cell wall synthesis and water transport in xylem.
    Hu X; Cui Y; Lu X; Song W; Lei L; Zhu J; Lai J; E L; Zhao H
    J Integr Plant Biol; 2020 Oct; 62(10):1607-1624. PubMed ID: 32129568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matrix solubilization and cell wall weakening by β-expansin (group-1 allergen) from maize pollen.
    Tabuchi A; Li LC; Cosgrove DJ
    Plant J; 2011 Nov; 68(3):546-59. PubMed ID: 21749508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of beta-1,3-xylooligosaccharides generated from Caulerpa racemosa var. laete-virens beta-1,3-xylan by the action of beta-1,3-xylanase.
    Kiyohara M; Hama Y; Yamaguchi K; Ito M
    J Biochem; 2006 Sep; 140(3):369-73. PubMed ID: 16891637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of group-1 allergen Zea m 1 in the coat and wall of maize pollen.
    Wang W; Milanesi C; Faleri C; Cresti M
    Acta Histochem; 2006; 108(5):395-400. PubMed ID: 16963110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Class B beta-expansins are needed for pollen separation and stigma penetration.
    Valdivia ER; Stephenson AG; Durachko DM; Cosgrove D
    Sex Plant Reprod; 2009 Sep; 22(3):141-52. PubMed ID: 20033435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of Aeromonas punctata ME-1 exo-xylanase X in E. coli for efficient hydrolysis of xylan to xylose.
    Juturu V; Teh TM; Wu JC
    Appl Biochem Biotechnol; 2014 Dec; 174(8):2653-62. PubMed ID: 25213085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipids are required for directional pollen-tube growth.
    Wolters-Arts M; Lush WM; Mariani C
    Nature; 1998 Apr; 392(6678):818-21. PubMed ID: 9572141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wheat genomic DNA fragment reduces pollen transmission of maize transgenes by reducing pollen viability.
    Scott MP; Peterson JM; Moran DL; Sangtong V; Smith L
    Transgenic Res; 2007 Oct; 16(5):629-43. PubMed ID: 17216545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic hydrolysis of wheat arabinoxylan by a recombinant "minimal" enzyme cocktail containing beta-xylosidase and novel endo-1,4-beta-xylanase and alpha-l-arabinofuranosidase activities.
    Sørensen HR; Pedersen S; Jørgensen CT; Meyer AS
    Biotechnol Prog; 2007; 23(1):100-7. PubMed ID: 17269676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Properties of hemicellulases of the enzyme complex from Trichoderma longibrachiatum].
    Markov AV; Gusakov AV; Dzedziulia EI; Ustinov BB; Antonov AA; Okunev ON; Bekkarevich AO; Sinitsyn AP
    Prikl Biokhim Mikrobiol; 2006; 42(6):654-64. PubMed ID: 17168294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.