These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17063370)

  • 1. Divided medium-based model for analyzing the dynamic reorganization of the cytoskeleton during cell deformation.
    Milan JL; Wendling-Mansuy S; Jean M; Chabrand P
    Biomech Model Mechanobiol; 2007 Nov; 6(6):373-90. PubMed ID: 17063370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: a quantitative analysis.
    Stamenović D; Coughlin MF
    J Theor Biol; 1999 Nov; 201(1):63-74. PubMed ID: 10534436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models of cytoskeletal mechanics of adherent cells.
    Stamenović D; Ingber DE
    Biomech Model Mechanobiol; 2002 Jun; 1(1):95-108. PubMed ID: 14586710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of the active and passive components of the cytoskeletal prestress to stiffening of airway smooth muscle cells.
    Rosenblatt N; Hu S; Suki B; Wang N; Stamenović D
    Ann Biomed Eng; 2007 Feb; 35(2):224-34. PubMed ID: 17151921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cytoskeletal prestress on cell rheological behavior.
    Stamenović D
    Acta Biomater; 2005 May; 1(3):255-62. PubMed ID: 16701804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a generalised tensegrity model describing the mechanical behaviour of the cytoskeleton structure.
    Wendling S; Cañadas P; Chabrand P
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):45-52. PubMed ID: 12623437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental tests of the cellular tensegrity hypothesis.
    Stamenović D; Mijailovich SM; Tolić-Nørrelykke IM; Wang N
    Biorheology; 2003; 40(1-3):221-5. PubMed ID: 12454408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical model of cytoskeleton structuration during cell adhesion and spreading.
    Maurin B; Cañadas P; Baudriller H; Montcourrier P; Bettache N
    J Biomech; 2008; 41(9):2036-41. PubMed ID: 18466907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubules may harden or soften cells, depending of the extent of cell distension.
    Stamenović D
    J Biomech; 2005 Aug; 38(8):1728-32. PubMed ID: 15958232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bio-chemo-mechanical model for cell contractility.
    Deshpande VS; McMeeking RM; Evans AG
    Proc Natl Acad Sci U S A; 2006 Sep; 103(38):14015-20. PubMed ID: 16959880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Durotaxis as an elastic stability phenomenon.
    Lazopoulos KA; Stamenović D
    J Biomech; 2008; 41(6):1289-94. PubMed ID: 18308324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape-engineered fibroblasts: cell elasticity and actin cytoskeletal features characterized by fluorescence and atomic force microscopy.
    Kidoaki S; Matsuda T
    J Biomed Mater Res A; 2007 Jun; 81(4):803-10. PubMed ID: 17226810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focal adhesions as mechanosensors: the two-spring model.
    Schwarz US; Erdmann T; Bischofs IB
    Biosystems; 2006; 83(2-3):225-32. PubMed ID: 16236431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the contribution of actin networks to the elastic strength of fibroblasts.
    Ananthakrishnan R; Guck J; Wottawah F; Schinkinger S; Lincoln B; Romeyke M; Moon T; Käs J
    J Theor Biol; 2006 Sep; 242(2):502-16. PubMed ID: 16720032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microstructural approach to cytoskeletal mechanics based on tensegrity.
    Stamenović D; Fredberg JJ; Wang N; Butler JP; Ingber DE
    J Theor Biol; 1996 Jul; 181(2):125-36. PubMed ID: 8935591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compaction of cell shape occurs before decrease of elasticity in CHO-K1 cells treated with actin cytoskeleton disrupting drug cytochalasin D.
    Schulze C; Müller K; Käs JA; Gerdelmann JC
    Cell Motil Cytoskeleton; 2009 Apr; 66(4):193-201. PubMed ID: 19235199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular stress transmission through actin stress fiber network in adherent vascular cells.
    Deguchi S; Ohashi T; Sato M
    Mol Cell Biomech; 2005 Dec; 2(4):205-16. PubMed ID: 16705866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mechanotransduction and tensegrity (I)].
    Mustaţă T; Rusu V
    Rev Med Chir Soc Med Nat Iasi; 1998; 102(3-4):25-35. PubMed ID: 10756840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative evaluation of threshold fiber strain that induces reorganization of cytoskeletal actin fiber structure in osteoblastic cells.
    Sato K; Adachi T; Matsuo M; Tomita Y
    J Biomech; 2005 Sep; 38(9):1895-901. PubMed ID: 16023478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-engineered vascular endothelial cells: nitric oxide production, cell elasticity, and actin cytoskeletal features.
    Kidoaki S; Matsuda T
    J Biomed Mater Res A; 2007 Jun; 81(3):728-35. PubMed ID: 17212346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.