BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17063744)

  • 1. Growth and growth factor production by human nasal septal chondrocytes in serum-free media.
    Kita M; Hanasono MM; Mikulec AA; Pollard JD; Kadleck JM; Koch RJ
    Am J Rhinol; 2006; 20(5):489-95. PubMed ID: 17063744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of growth factors on cell proliferation, matrix deposition, and morphology of human nasal septal chondrocytes cultured in monolayer.
    Richmon JD; Sage AB; Shelton E; Schumacher BL; Sah RL; Watson D
    Laryngoscope; 2005 Sep; 115(9):1553-60. PubMed ID: 16148694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basic fibroblast growth factor with human serum supplementation: enhancement of human chondrocyte proliferation and promotion of cartilage regeneration.
    Chua KH; Aminuddin BS; Fuzina NH; Ruszymah BH
    Singapore Med J; 2007 Apr; 48(4):324-32. PubMed ID: 17384880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of growth factors in the proliferation of avian articular chondrocytes in a serum-free culture system.
    Rousche KT; Ford BC; Praul CA; Leach RM
    Connect Tissue Res; 2001; 42(3):165-74. PubMed ID: 11913488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue engineering with chondrocytes.
    Koch RJ; Gorti GK
    Facial Plast Surg; 2002 Feb; 18(1):59-68. PubMed ID: 11823934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basic fibroblast growth factor and insulinlike growth factor I support the growth of human septal chondrocytes in a serum-free environment.
    Dunham BP; Koch RJ
    Arch Otolaryngol Head Neck Surg; 1998 Dec; 124(12):1325-30. PubMed ID: 9865754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy.
    Munirah S; Samsudin OC; Aminuddin BS; Ruszymah BH
    Tissue Cell; 2010 Oct; 42(5):282-92. PubMed ID: 20810142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts.
    Guerne PA; Sublet A; Lotz M
    J Cell Physiol; 1994 Mar; 158(3):476-84. PubMed ID: 8126071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basic fibroblast growth factor inhibits the anabolic activity of insulin-like growth factor 1 and osteogenic protein 1 in adult human articular chondrocytes.
    Loeser RF; Chubinskaya S; Pacione C; Im HJ
    Arthritis Rheum; 2005 Dec; 52(12):3910-7. PubMed ID: 16320338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of FGF-2 and IGF-1 on adult canine articular chondrocytes in type II collagen-glycosaminoglycan scaffolds in vitro.
    Veilleux N; Spector M
    Osteoarthritis Cartilage; 2005 Apr; 13(4):278-86. PubMed ID: 15780641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth factor profile of irradiated human dermal fibroblasts using a serum-free method.
    Lonergan DM; Mikulec AA; Hanasono MM; Kita M; Koch RJ
    Plast Reconstr Surg; 2003 May; 111(6):1960-8. PubMed ID: 12711958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiated cellular function in fetal chondrocytes cultured with insulin-like growth factor-I and transforming growth factor-beta.
    Nixon AJ; Lillich JT; Burton-Wurster N; Lust G; Mohammed HO
    J Orthop Res; 1998 Sep; 16(5):531-41. PubMed ID: 9820275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between insulin-like growth factor-1 with other growth factors in serum depleted culture medium for human cartilage engineering.
    Chua KH; Aminuddin BS; Fuzina NH; Ruszymah BH
    Med J Malaysia; 2004 May; 59 Suppl B():7-8. PubMed ID: 15468792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage.
    Chua KH; Aminuddin BS; Fuzina NH; Ruszymah BH
    Eur Cell Mater; 2005 Jun; 9():58-67; discussion 67. PubMed ID: 15962238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes.
    Tay AG; Farhadi J; Suetterlin R; Pierer G; Heberer M; Martin I
    Tissue Eng; 2004; 10(5-6):762-70. PubMed ID: 15265293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth factor regulation of chondrocyte integrins. Differential effects of insulin-like growth factor 1 and transforming growth factor beta on alpha 1 beta 1 integrin expression and chondrocyte adhesion to type VI collagen.
    Loeser RF
    Arthritis Rheum; 1997 Feb; 40(2):270-6. PubMed ID: 9041938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell kinetics of human nasal septal chondrocytes in vitro: importance for cartilage grafting in otolaryngology.
    Lavezzi A; Mantovani M; della Berta LG; Matturri L
    J Otolaryngol; 2002 Dec; 31(6):366-70. PubMed ID: 12593549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of insulin-like growth factor-1 and basic fibroblast growth factor on the proliferation of chondrocytes embedded in the collagen gel using an integrated microfluidic device.
    Li Y; Qin J; Lin B; Zhang W
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1267-75. PubMed ID: 20205532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The human auricular chondrocyte. Responses to growth factors.
    Quatela VC; Sherris DA; Rosier RN
    Arch Otolaryngol Head Neck Surg; 1993 Jan; 119(1):32-7. PubMed ID: 8417741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The combination of insulin-like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes.
    Loeser RF; Pacione CA; Chubinskaya S
    Arthritis Rheum; 2003 Aug; 48(8):2188-96. PubMed ID: 12905472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.