BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

671 related articles for article (PubMed ID: 17064108)

  • 1. MCM-41 supported Cu-Mn catalysts for catalytic oxidation of toluene at low temperatures.
    Li WB; Zhuang M; Xiao TC; Green ML
    J Phys Chem B; 2006 Nov; 110(43):21568-71. PubMed ID: 17064108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials.
    Fan F; Feng Z; Li C
    Acc Chem Res; 2010 Mar; 43(3):378-87. PubMed ID: 20028121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Al2O3-supported transition-metal oxide catalysts for catalytic incineration of toluene.
    Wang CH
    Chemosphere; 2004 Apr; 55(1):11-7. PubMed ID: 14720541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noble-metal-based catalysts supported on zeolites and macro-mesoporous metal oxide supports for the total oxidation of volatile organic compounds.
    Barakat T; Rooke JC; Tidahy HL; Hosseini M; Cousin R; Lamonier JF; Giraudon JM; De Weireld G; Su BL; Siffert S
    ChemSusChem; 2011 Oct; 4(10):1420-30. PubMed ID: 21957051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoporous Silica MCM-41 from Fly Ash as a Support of Bimetallic Cu/Mn Catalysts for Toluene Combustion.
    Mokrzycki J; Fedyna M; Duraczyńska D; Marzec M; Panek R; Franus W; Bajda T; Karcz R
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene.
    Lu H; Kong X; Huang H; Zhou Y; Chen Y
    J Environ Sci (China); 2015 Jun; 32():102-7. PubMed ID: 26040736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beta zeolite colloidal nanocrystals supported on mesoporous MCM-41.
    Mavrodinova V; Popova M; Valchev V; Nickolov R; Minchev Ch
    J Colloid Interface Sci; 2005 Jun; 286(1):268-73. PubMed ID: 15848427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic role of Cu sites of Cu/MCM-41 in phenol hydroxylation.
    Zhang G; Long J; Wang X; Zhang Z; Dai W; Liu P; Li Z; Wu L; Fu X
    Langmuir; 2010 Jan; 26(2):1362-71. PubMed ID: 19938803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of iron tetrasulfophthalocyanine on functionalized MCM-48 and MCM-41 mesoporous silicas: catalysts for oxidation of styrene.
    Pirouzmand M; Amini MM; Safari N
    J Colloid Interface Sci; 2008 Mar; 319(1):199-205. PubMed ID: 18067913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of palladium in mesoporous silica matrix: preparation, characterization, and its catalytic efficacy in carbon-carbon coupling reactions.
    Jana S; Dutta B; Bera R; Koner S
    Inorg Chem; 2008 Jun; 47(12):5512-20. PubMed ID: 18459724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water.
    Kim KH; Kim JR; Ihm SK
    J Hazard Mater; 2009 Aug; 167(1-3):1158-62. PubMed ID: 19264401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly loaded and thermally stable Cu-containing mesoporous silica-active catalyst for the NO + CO reaction.
    Pantazis CC; Trikalitis PN; Pomonis PJ
    J Phys Chem B; 2005 Jun; 109(25):12574-81. PubMed ID: 16852555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique.
    Zhu H; Liang C; Yan W; Overbury SH; Dai S
    J Phys Chem B; 2006 Jun; 110(22):10842-8. PubMed ID: 16771335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Niobium doping enhanced catalytic performance of Mn/MCM-41 for toluene degradation in the NTP-catalysis system.
    Yao X; Zhang J; Liang X; Long C
    Chemosphere; 2019 Sep; 230():479-487. PubMed ID: 31121511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of zeolite acidity and structure on ozone oxidation of toluene using Ru-Mn loaded zeolites at ambient temperature.
    Kim J; Kwon EE; Lee JE; Jang SH; Jeon JK; Song J; Park YK
    J Hazard Mater; 2021 Feb; 403():123934. PubMed ID: 33264983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.
    Madhavan N; Jones CW; Weck M
    Acc Chem Res; 2008 Sep; 41(9):1153-65. PubMed ID: 18793027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic catalytic role of mesoporous silica in preferential oxidation of carbon monoxide in excess hydrogen.
    Huang S; Hara K; Fukuoka A
    Chemistry; 2012 Apr; 18(15):4738-47. PubMed ID: 22377964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigations on the effect of Mn ions on the local structure and photocatalytic activity of Cu(I)-ZSM-5 catalysts.
    Chen H; Matsuoka M; Zhang J; Anpo M
    J Phys Chem B; 2006 Mar; 110(9):4263-9. PubMed ID: 16509722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic ozonation of methylethylketone over porous Mn-Cu/HZSM-5.
    Ha MJ; Lee JE; Park Y; Cha JS; Kim YM; Kim BS
    Environ Res; 2023 Jun; 227():115706. PubMed ID: 36931381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of lanthanum-doped MCM-48 molecular sieves and its catalytic performance for the oxidation of styrene.
    Zhan W; Guo Y; Wang Y; Liu X; Guo Y; Wang Y; Zhang Z; Lu G
    J Phys Chem B; 2007 Oct; 111(42):12103-10. PubMed ID: 17914798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.