BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17064156)

  • 1. Band-gap engineering of metal oxides for dye-sensitized solar cells.
    Dürr M; Rosselli S; Yasuda A; Nelles G
    J Phys Chem B; 2006 Nov; 110(43):21899-902. PubMed ID: 17064156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells.
    Salvador P; Hidalgo MG; Zaban A; Bisquert J
    J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells.
    Rühle S; Greenshtein M; Chen SG; Merson A; Pizem H; Sukenik CS; Cahen D; Zaban A
    J Phys Chem B; 2005 Oct; 109(40):18907-13. PubMed ID: 16853434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO2 in dye-sensitized solar cells.
    Niinobe D; Makari Y; Kitamura T; Wada Y; Yanagida S
    J Phys Chem B; 2005 Sep; 109(38):17892-900. PubMed ID: 16853295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of solvent and additives on the open-circuit voltage of ZnO-based dye-sensitized solar cells: a combined theoretical and experimental study.
    Le Bahers T; Labat F; Pauporté T; Ciofini I
    Phys Chem Chem Phys; 2010 Nov; 12(44):14710-9. PubMed ID: 20949189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V.
    Gibson EA; Smeigh AL; Le Pleux L; Fortage J; Boschloo G; Blart E; Pellegrin Y; Odobel F; Hagfeldt A; Hammarström L
    Angew Chem Int Ed Engl; 2009; 48(24):4402-5. PubMed ID: 19431175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The origin of higher open-circuit voltage in Zn-doped TiO2 nanoparticle-based dye-sensitized solar cells.
    Zhu F; Zhang P; Wu X; Fu L; Zhang J; Xu D
    Chemphyschem; 2012 Nov; 13(16):3731-7. PubMed ID: 22899421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial electron-transfer kinetics in metal-free organic dye-sensitized solar cells: combined effects of molecular structure of dyes and electrolytes.
    Miyashita M; Sunahara K; Nishikawa T; Uemura Y; Koumura N; Hara K; Mori A; Abe T; Suzuki E; Mori S
    J Am Chem Soc; 2008 Dec; 130(52):17874-81. PubMed ID: 19067515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How the nature of triphenylamine-polyene dyes in dye-sensitized solar cells affects the open-circuit voltage and electron lifetimes.
    Marinado T; Nonomura K; Nissfolk J; Karlsson MK; Hagberg DP; Sun L; Mori S; Hagfeldt A
    Langmuir; 2010 Feb; 26(4):2592-8. PubMed ID: 19863060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: shielding versus band-edge movement.
    Neale NR; Kopidakis N; van de Lagemaat J; Grätzel M; Frank AJ
    J Phys Chem B; 2005 Dec; 109(49):23183-9. PubMed ID: 16375281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium-modulated conduction band edge shifts and charge-transfer dynamics in dye-sensitized solar cells based on a dicyanamide ionic liquid.
    Bai Y; Zhang J; Wang Y; Zhang M; Wang P
    Langmuir; 2011 Apr; 27(8):4749-55. PubMed ID: 21438523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical interfaces in organic solar cells and their influence on the open-circuit voltage.
    Potscavage WJ; Sharma A; Kippelen B
    Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers.
    Palomares E; Clifford JN; Haque SA; Lutz T; Durrant JR
    J Am Chem Soc; 2003 Jan; 125(2):475-82. PubMed ID: 12517161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements.
    O'Regan BC; Scully S; Mayer AC; Palomares E; Durrant J
    J Phys Chem B; 2005 Mar; 109(10):4616-23. PubMed ID: 16851540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanoparticle films.
    O'Regan BC; Bakker K; Kroeze J; Smit H; Sommeling P; Durrant JR
    J Phys Chem B; 2006 Aug; 110(34):17155-60. PubMed ID: 16928011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Band gap engineering of bulk ZrO2 by Ti doping.
    Gallino F; Di Valentin C; Pacchioni G
    Phys Chem Chem Phys; 2011 Oct; 13(39):17667-75. PubMed ID: 21897973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of electrolytes on charge recombination in dye-sensitized TiO(2) solar cell (1): the case of solar cells using the I(-)/I(3)(-) redox couple.
    Nakade S; Kanzaki T; Kubo W; Kitamura T; Wada Y; Yanagida S
    J Phys Chem B; 2005 Mar; 109(8):3480-7. PubMed ID: 16851382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: evidence for surface passivation.
    Kopidakis N; Neale NR; Frank AJ
    J Phys Chem B; 2006 Jun; 110(25):12485-9. PubMed ID: 16800576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoelectrochemical study of the band structure of Zn(2)SnO(4) prepared by the hydrothermal method.
    Alpuche-Aviles MA; Wu Y
    J Am Chem Soc; 2009 Mar; 131(9):3216-24. PubMed ID: 19219993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.