These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17064156)

  • 21. Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells.
    Boschloo G; Häggman L; Hagfeldt A
    J Phys Chem B; 2006 Jul; 110(26):13144-50. PubMed ID: 16805626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two novel carbazole dyes for dye-sensitized solar cells with open-circuit voltages up to 1 V based on Br(-)/Br(3)(-) electrolytes.
    Teng C; Yang X; Yuan C; Li C; Chen R; Tian H; Li S; Hagfeldt A; Sun L
    Org Lett; 2009 Dec; 11(23):5542-5. PubMed ID: 19899751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes.
    Howie WH; Claeyssens F; Miura H; Peter LM
    J Am Chem Soc; 2008 Jan; 130(4):1367-75. PubMed ID: 18177043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct measurement of the temperature coefficient of the electron quasi-fermi level in dye-sensitized nanocrystalline solar cells using a titanium sensor electrode.
    Lobato K; Peter LM
    J Phys Chem B; 2006 Nov; 110(43):21920-3. PubMed ID: 17064159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of electrode structures and photovoltaic properties of porphyrin-sensitized solar cells with TiO2 and Nb, Ge, Zr-added TiO2 composite electrodes.
    Imahori H; Hayashi S; Umeyama T; Eu S; Oguro A; Kang S; Matano Y; Shishido T; Ngamsinlapasathian S; Yoshikawa S
    Langmuir; 2006 Dec; 22(26):11405-11. PubMed ID: 17154633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure/function relationships in dyes for solar energy conversion: a two-atom change in dye structure and the mechanism for its effect on cell voltage.
    O'Regan BC; Walley K; Juozapavicius M; Anderson A; Matar F; Ghaddar T; Zakeeruddin SM; Klein C; Durrant JR
    J Am Chem Soc; 2009 Mar; 131(10):3541-8. PubMed ID: 19275259
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of photocurrent generation and open circuit voltage in dye-sensitized solar cells using Li+ trapping species in the gel electrolyte.
    Benedetti JE; de Paoli MA; Nogueira AF
    Chem Commun (Camb); 2008 Mar; (9):1121-3. PubMed ID: 18292910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interpretation of apparent activation energies for electron transport in dye-sensitized nanocrystalline solar cells.
    Peter LM; Walker AB; Boschloo G; Hagfeldt A
    J Phys Chem B; 2006 Jul; 110(28):13694-9. PubMed ID: 16836312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A general polymer-based process to prepare mixed metal oxides: the case of Zn1-xMgxO nanoparticles.
    Lu G; Lieberwirth I; Wegner G
    J Am Chem Soc; 2006 Dec; 128(48):15445-50. PubMed ID: 17132011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells.
    Law M; Greene LE; Radenovic A; Kuykendall T; Liphardt J; Yang P
    J Phys Chem B; 2006 Nov; 110(45):22652-63. PubMed ID: 17092013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Annealing sequence dependent open-circuit voltage of inverted polymer solar cells attributable to interfacial chemical reaction between top electrodes and photoactive layers.
    Kim JB; Guan ZL; Shu AL; Kahn A; Loo YL
    Langmuir; 2011 Sep; 27(17):11265-71. PubMed ID: 21774546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High open-circuit voltage solid-state dye-sensitized solar cells with organic dye.
    Chen P; Yum JH; De Angelis F; Mosconi E; Fantacci S; Moon SJ; Baker RH; Ko J; Nazeeruddin MK; Grätzel M
    Nano Lett; 2009 Jun; 9(6):2487-92. PubMed ID: 19438193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.
    O'Regan BC; Durrant JR
    Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrochloric acid treatment of TiO2 electrode for quasi-solid-state dye-sensitized solar cells.
    Park DW; Park KH; Lee JW; Hwang KJ; Choi YK
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3722-6. PubMed ID: 18047045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N3-sensitized TiO2 films: in situ proton exchange toward open-circuit photovoltage enhancement.
    Wang ZS; Sugihara H
    Langmuir; 2006 Nov; 22(23):9718-22. PubMed ID: 17073502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Significant reduction in NiO band gap upon formation of Lix Ni1-x O alloys: applications to solar energy conversion.
    Alidoust N; Toroker MC; Keith JA; Carter EA
    ChemSusChem; 2014 Jan; 7(1):195-201. PubMed ID: 24265209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage.
    Wang E; Ma Z; Zhang Z; Henriksson P; Inganäs O; Zhang F; Andersson MR
    Chem Commun (Camb); 2011 May; 47(17):4908-10. PubMed ID: 21431215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TiO2 band shift by nitrogen-containing heterocycles in dye-sensitized solar cells: a periodic density functional theory study.
    Kusama H; Orita H; Sugihara H
    Langmuir; 2008 Apr; 24(8):4411-9. PubMed ID: 18331067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optoelectronic properties analysis of Ti-substituted GaP.
    Tablero C
    J Chem Phys; 2005 Nov; 123(18):184703. PubMed ID: 16292917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alkyl-functionalized organic dyes for efficient molecular photovoltaics.
    Koumura N; Wang ZS; Mori S; Miyashita M; Suzuki E; Hara K
    J Am Chem Soc; 2006 Nov; 128(44):14256-7. PubMed ID: 17076489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.