BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 17064159)

  • 1. Direct measurement of the temperature coefficient of the electron quasi-fermi level in dye-sensitized nanocrystalline solar cells using a titanium sensor electrode.
    Lobato K; Peter LM
    J Phys Chem B; 2006 Nov; 110(43):21920-3. PubMed ID: 17064159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct measurement of the internal electron quasi-Fermi level in dye sensitized solar cells using a titanium secondary electrode.
    Lobato K; Peter LM; Würfel U
    J Phys Chem B; 2006 Aug; 110(33):16201-4. PubMed ID: 16913742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of activation energies for transport and recombination in mesoporous TiO2/dye/electrolyte films--taking into account surface charge shifts with temperature.
    O'Regan BC; Durrant JR
    J Phys Chem B; 2006 May; 110(17):8544-7. PubMed ID: 16640403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretation of apparent activation energies for electron transport in dye-sensitized nanocrystalline solar cells.
    Peter LM; Walker AB; Boschloo G; Hagfeldt A
    J Phys Chem B; 2006 Jul; 110(28):13694-9. PubMed ID: 16836312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transport in coumarin-dye-sensitized nanocrystalline TiO2 electrodes.
    Hara K; Miyamoto K; Abe Y; Yanagida M
    J Phys Chem B; 2005 Dec; 109(50):23776-8. PubMed ID: 16375359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation energy of electron transport in dye-sensitized TiO2 solar cells.
    Boschloo G; Hagfeldt A
    J Phys Chem B; 2005 Jun; 109(24):12093-8. PubMed ID: 16852492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells.
    Salvador P; Hidalgo MG; Zaban A; Bisquert J
    J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells.
    Bailes M; Cameron PJ; Lobato K; Peter LM
    J Phys Chem B; 2005 Aug; 109(32):15429-35. PubMed ID: 16852957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dye-sensitized nanocrystalline solar cells.
    Peter LM
    Phys Chem Chem Phys; 2007 Jun; 9(21):2630-42. PubMed ID: 17627308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO2 in dye-sensitized solar cells.
    Niinobe D; Makari Y; Kitamura T; Wada Y; Yanagida S
    J Phys Chem B; 2005 Sep; 109(38):17892-900. PubMed ID: 16853295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells.
    Boschloo G; Häggman L; Hagfeldt A
    J Phys Chem B; 2006 Jul; 110(26):13144-50. PubMed ID: 16805626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes.
    Howie WH; Claeyssens F; Miura H; Peter LM
    J Am Chem Soc; 2008 Jan; 130(4):1367-75. PubMed ID: 18177043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization.
    Ohsaki Y; Masaki N; Kitamura T; Wada Y; Okamoto T; Sekino T; Niihara K; Yanagida S
    Phys Chem Chem Phys; 2005 Dec; 7(24):4157-63. PubMed ID: 16474882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of surface area on charge transport and recombination in dye-sensitized TiO2 solar cells.
    Zhu K; Kopidakis N; Neale NR; van de Lagemaat J; Frank AJ
    J Phys Chem B; 2006 Dec; 110(50):25174-80. PubMed ID: 17165961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial electron distribution and its origin in the nanoporous TiO2 network of a dye solar cell.
    Würfel U; Wagner J; Hinsch A
    J Phys Chem B; 2005 Nov; 109(43):20444-8. PubMed ID: 16853645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO2 band shift by nitrogen-containing heterocycles in dye-sensitized solar cells: a periodic density functional theory study.
    Kusama H; Orita H; Sugihara H
    Langmuir; 2008 Apr; 24(8):4411-9. PubMed ID: 18331067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrochloric acid treatment of TiO2 electrode for quasi-solid-state dye-sensitized solar cells.
    Park DW; Park KH; Lee JW; Hwang KJ; Choi YK
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3722-6. PubMed ID: 18047045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of high efficiency dye-sensitized solar cells.
    Wang Q; Ito S; Grätzel M; Fabregat-Santiago F; Mora-Seró I; Bisquert J; Bessho T; Imai H
    J Phys Chem B; 2006 Dec; 110(50):25210-21. PubMed ID: 17165965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous electron transfer from dye-sensitized nanocrystalline TiO2 to [Co(bpy)3]3+: insights gained from impedance spectroscopy.
    Liu Y; Jennings JR; Zakeeruddin SM; Grätzel M; Wang Q
    J Am Chem Soc; 2013 Mar; 135(10):3939-52. PubMed ID: 23425317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of trap-state distribution and carrier transport in nanotubular and nanoparticulate TiO(2) electrodes for dye-sensitized solar cells.
    Mohammadpour R; Iraji Zad A; Hagfeldt A; Boschloo G
    Chemphyschem; 2010 Jul; 11(10):2140-5. PubMed ID: 20572254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.