BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 17064159)

  • 21. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands.
    Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB
    J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient eosin y dye-sensitized solar cell containing Br-/Br3- electrolyte.
    Wang ZS; Sayama K; Sugihara H
    J Phys Chem B; 2005 Dec; 109(47):22449-55. PubMed ID: 16853924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parameters influencing the efficiency of electron injection in dye-sensitized solar cells.
    Koops SE; O'Regan BC; Barnes PR; Durrant JR
    J Am Chem Soc; 2009 Apr; 131(13):4808-18. PubMed ID: 19334776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons.
    Jennings JR; Ghicov A; Peter LM; Schmuki P; Walker AB
    J Am Chem Soc; 2008 Oct; 130(40):13364-72. PubMed ID: 18774820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method.
    Bisquert J; Zaban A; Greenshtein M; Mora-Seró I
    J Am Chem Soc; 2004 Oct; 126(41):13550-9. PubMed ID: 15479112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells.
    Rühle S; Greenshtein M; Chen SG; Merson A; Pizem H; Sukenik CS; Cahen D; Zaban A
    J Phys Chem B; 2005 Oct; 109(40):18907-13. PubMed ID: 16853434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retardation of interfacial charge recombination by addition of quaternary ammonium cation and its application to low temperature processed dye-sensitized solar cells.
    Kanzaki T; Nakade S; Wada Y; Yanagida S
    Photochem Photobiol Sci; 2006 Apr; 5(4):389-94. PubMed ID: 16583019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zinc-doping in TiO2 films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination.
    Wang KP; Teng H
    Phys Chem Chem Phys; 2009 Nov; 11(41):9489-96. PubMed ID: 19830333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of 4-tert-butylpyridine on the quasi-Fermi levels of TiO2 films in the presence of different cations in dye-sensitized solar cells.
    Zhang S; Yang X; Zhang K; Chen H; Yanagida M; Han L
    Phys Chem Chem Phys; 2011 Nov; 13(43):19310-3. PubMed ID: 21964633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational studies on the interactions among redox couples, additives and TiO2: implications for dye-sensitized solar cells.
    Asaduzzaman AM; Schreckenbach G
    Phys Chem Chem Phys; 2010 Nov; 12(43):14609-18. PubMed ID: 20938519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A numerical model for charge transport and recombination in dye-sensitized solar cells.
    Anta JA; Casanueva F; Oskam G
    J Phys Chem B; 2006 Mar; 110(11):5372-8. PubMed ID: 16539471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?
    Cameron PJ; Peter LM
    J Phys Chem B; 2005 Apr; 109(15):7392-8. PubMed ID: 16851846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dye-sensitized solar cells based on nanocrystalline TiO2 films surface treated with Al3+ ions: photovoltage and electron transport studies.
    Alarcón H; Boschloo G; Mendoza P; Solis JL; Hagfeldt A
    J Phys Chem B; 2005 Oct; 109(39):18483-90. PubMed ID: 16853380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells.
    Yang N; Zhai J; Wang D; Chen Y; Jiang L
    ACS Nano; 2010 Feb; 4(2):887-94. PubMed ID: 20088539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions.
    Kongkanand A; Kamat PV
    ACS Nano; 2007 Aug; 1(1):13-21. PubMed ID: 19203126
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observation of pH-dependent back-electron-transfer dynamics in alizarin/TiO2 adsorbates: importance of trap states.
    Matylitsky VV; Lenz MO; Wachtveitl J
    J Phys Chem B; 2006 Apr; 110(16):8372-9. PubMed ID: 16623522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells.
    Wang Q; Moser JE; Grätzel M
    J Phys Chem B; 2005 Aug; 109(31):14945-53. PubMed ID: 16852893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoacoustic measurement of electron injection efficiencies and energies from excited sensitizer dyes into nanocrystalline TiO2 films.
    Serpa C; Schabauer J; Piedade AP; Monteiro CJ; Pereira MM; Douglas P; Burrows HD; Arnaut LG
    J Am Chem Soc; 2008 Jul; 130(28):8876-7. PubMed ID: 18558689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of a nanoporous CaCO3-coated TiO2 electrode and its application to a dye-sensitized solar cell.
    Lee S; Kim JY; Youn SH; Park M; Hong KS; Jung HS; Lee JK; Shin H
    Langmuir; 2007 Nov; 23(23):11907-10. PubMed ID: 17927224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.