These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 17064159)

  • 41. Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO2.
    Duncan WR; Craig CF; Prezhdo OV
    J Am Chem Soc; 2007 Jul; 129(27):8528-43. PubMed ID: 17579405
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of nanochemical environments in porous TiO2 in photocurrent efficiency and degradation in dye sensitized solar cells.
    Junghänel M; Tributsch H
    J Phys Chem B; 2005 Dec; 109(48):22876-83. PubMed ID: 16853980
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.
    O'Regan BC; Durrant JR
    Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Iodine/iodide-free dye-sensitized solar cells.
    Yanagida S; Yu Y; Manseki K
    Acc Chem Res; 2009 Nov; 42(11):1827-38. PubMed ID: 19877690
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of low crystallinity TiO2 film with nanocrystalline anatase film for dye-sensitized solar cells.
    Tang X; Qian J; Wang Z; Wang H; Feng Q; Liu G
    J Colloid Interface Sci; 2009 Feb; 330(2):386-91. PubMed ID: 19036388
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of concentration of anthocyanins on electron transport in dye sensitized solar cells.
    Okello A; Owuor BO; Namukobe J; Okello D; Mwabora J
    Heliyon; 2021 Mar; 7(3):e06571. PubMed ID: 33855239
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion.
    Zhang D; Downing JA; Knorr FJ; McHale JL
    J Phys Chem B; 2006 Nov; 110(43):21890-8. PubMed ID: 17064155
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: free energy vs distance dependence.
    Clifford JN; Palomares E; Nazeeruddin MK; Grätzel M; Nelson J; Li X; Long NJ; Durrant JR
    J Am Chem Soc; 2004 Apr; 126(16):5225-33. PubMed ID: 15099107
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells.
    Zhang Z; Zakeeruddin SM; O'Regan BC; Humphry-Baker R; Grätzel M
    J Phys Chem B; 2005 Nov; 109(46):21818-24. PubMed ID: 16853833
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Linkage of N3 dye to N3 dye on nanocrystalline TiO2 through trans-1,2-bis(4-pyridyl)ethylene for enhancement of photocurrent of dye-sensitized solar cells.
    Jang SR; Vittal R; Lee J; Jeong N; Kim KJ
    Chem Commun (Camb); 2006 Jan; (1):103-5. PubMed ID: 16353107
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of charge transport and recombination on the performance of dye-sensitized solar cells.
    Wang M; Chen P; Humphry-Baker R; Zakeeruddin SM; Grätzel M
    Chemphyschem; 2009 Jan; 10(1):290-9. PubMed ID: 19115326
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transient absorption studies and numerical modeling of iodine photoreduction by nanocrystalline TiO2 films.
    Green AN; Chandler RE; Haque SA; Nelson J; Durrant JR
    J Phys Chem B; 2005 Jan; 109(1):142-50. PubMed ID: 16850997
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improving the performance of colloidal quantum-dot-sensitized solar cells.
    Giménez S; Mora-Seró I; Macor L; Guijarro N; Lana-Villarreal T; Gómez R; Diguna LJ; Shen Q; Toyoda T; Bisquert J
    Nanotechnology; 2009 Jul; 20(29):295204. PubMed ID: 19567969
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interpretation of electron diffusion coefficient in organic and inorganic semiconductors with broad distributions of states.
    Bisquert J
    Phys Chem Chem Phys; 2008 Jun; 10(22):3175-94. PubMed ID: 18500394
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of the alkaline cation size on the conductivity in gel polymer electrolytes and their influence on photo electrochemical solar cells.
    Bandara TM; Fernando HD; Furlani M; Albinsson I; Dissanayake MA; Ratnasekera JL; Mellander BE
    Phys Chem Chem Phys; 2016 Apr; 18(16):10873-81. PubMed ID: 27040991
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metal-oxide interfacial reactions: encapsulation of Pd on TiO2 (110).
    Fu Q; Wagner T; Olliges S; Carstanjen HD
    J Phys Chem B; 2005 Jan; 109(2):944-51. PubMed ID: 16866463
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of phenylalkanoic acids as co-adsorbents on the performance of dye-sensitized solar cells.
    Nath NC; Lee HJ; Choi WY; Lee JJ
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7880-5. PubMed ID: 24266157
    [TBL] [Abstract][Full Text] [Related]  

  • 59. "Sticky electrons" transport and interfacial transfer of electrons in the dye-sensitized solar cell.
    Peter L
    Acc Chem Res; 2009 Nov; 42(11):1839-47. PubMed ID: 19637905
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recombination and transport processes in dye-sensitized solar cells investigated under working conditions.
    Nissfolk J; Fredin K; Hagfeldt A; Boschloo G
    J Phys Chem B; 2006 Sep; 110(36):17715-8. PubMed ID: 16956254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.