These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Genetic diversity of phlD gene from 2,4-diacetylphloroglucinol-producing Pseudomonas spp. strains from the maize rhizosphere. Picard C; Bosco M FEMS Microbiol Lett; 2003 Feb; 219(2):167-72. PubMed ID: 12620616 [TBL] [Abstract][Full Text] [Related]
3. Maize heterosis affects the structure and dynamics of indigenous rhizospheric auxins-producing Pseudomonas populations. Picard C; Bosco M FEMS Microbiol Ecol; 2005 Aug; 53(3):349-57. PubMed ID: 16329954 [TBL] [Abstract][Full Text] [Related]
4. Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. Bergsma-Vlami M; Prins ME; Raaijmakers JM FEMS Microbiol Ecol; 2005 Mar; 52(1):59-69. PubMed ID: 16329893 [TBL] [Abstract][Full Text] [Related]
5. Contribution of phlA and some metabolites of fluorescent pseudomonads to antifungal activity. Afsharmanesh H; Ahmadzadeh M; Sharifi-Tehrani A; Javan-Nikkhah M; Ghazanfari K Commun Agric Appl Biol Sci; 2005; 70(3):151-5. PubMed ID: 16637170 [TBL] [Abstract][Full Text] [Related]
6. Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Picard C; Di Cello F; Ventura M; Fani R; Guckert A Appl Environ Microbiol; 2000 Mar; 66(3):948-55. PubMed ID: 10698757 [TBL] [Abstract][Full Text] [Related]
7. Antagonistic activity among 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Validov S; Mavrodi O; De La Fuente L; Boronin A; Weller D; Thomashow L; Mavrodi D FEMS Microbiol Lett; 2005 Jan; 242(2):249-56. PubMed ID: 15621445 [TBL] [Abstract][Full Text] [Related]
8. Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi. Fischer SE; Jofré EC; Cordero PV; Gutiérrez Mañero FJ; Mori GB Antonie Van Leeuwenhoek; 2010 Mar; 97(3):241-51. PubMed ID: 20020326 [TBL] [Abstract][Full Text] [Related]
9. Genetic diversity and antifungal activity of native Pseudomonas isolated from maize plants grown in a central region of Argentina. Cordero P; Cavigliasso A; Príncipe A; Godino A; Jofré E; Mori G; Fischer S Syst Appl Microbiol; 2012 Jul; 35(5):342-51. PubMed ID: 22748594 [TBL] [Abstract][Full Text] [Related]
10. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Weller DM; Landa BB; Mavrodi OV; Schroeder KL; De La Fuente L; Blouin Bankhead S; Allende Molar R; Bonsall RF; Mavrodi DV; Thomashow LS Plant Biol (Stuttg); 2007 Jan; 9(1):4-20. PubMed ID: 17058178 [TBL] [Abstract][Full Text] [Related]
11. A new DGGE protocol targeting 2,4-diacetylphloroglucinol biosynthetic gene phlD from phylogenetically contrasted biocontrol pseudomonads for assessment of disease-suppressive soils. Frapolli M; Moënne-Loccoz Y; Meyer J; Défago G FEMS Microbiol Ecol; 2008 Jun; 64(3):468-81. PubMed ID: 18393988 [TBL] [Abstract][Full Text] [Related]
12. Bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil. Da Mota FF; Gomes EA; Marriel IE; Paiva E; Seldin L J Microbiol Biotechnol; 2008 May; 18(5):805-14. PubMed ID: 18633275 [TBL] [Abstract][Full Text] [Related]
13. Effect of Fusarium verticillioides on maize-root-associated Burkholderia cenocepacia populations. Bevivino A; Peggion V; Chiarini L; Tabacchioni S; Cantale C; Dalmastri C Res Microbiol; 2005 Dec; 156(10):974-83. PubMed ID: 16085398 [TBL] [Abstract][Full Text] [Related]
14. Novel T-RFLP method to investigate six main groups of 2,4-diacetylphloroglucinol-producing pseudomonads in environmental samples. von Felten A; Meyer JB; Défago G; Maurhofer M J Microbiol Methods; 2011 Mar; 84(3):379-87. PubMed ID: 21144868 [TBL] [Abstract][Full Text] [Related]
15. Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Mazzola M; Funnell DL; Raaijmakers JM Microb Ecol; 2004 Oct; 48(3):338-48. PubMed ID: 15692854 [TBL] [Abstract][Full Text] [Related]
16. Quantification of Pseudomonas fluorescens strains F113, CHA0 and Pf153 in the rhizosphere of maize by strain-specific real-time PCR unaffected by the variability of DNA extraction efficiency. Von Felten A; Défago G; Maurhofer M J Microbiol Methods; 2010 May; 81(2):108-15. PubMed ID: 20153383 [TBL] [Abstract][Full Text] [Related]
17. Assessment of genotypic diversity of antibiotic-producing pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis. Bergsma-Vlami M; Prins ME; Staats M; Raaijmakers JM Appl Environ Microbiol; 2005 Feb; 71(2):993-1003. PubMed ID: 15691958 [TBL] [Abstract][Full Text] [Related]
18. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Raaijmakers JM; Weller DM Appl Environ Microbiol; 2001 Jun; 67(6):2545-54. PubMed ID: 11375162 [TBL] [Abstract][Full Text] [Related]
19. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Pal KK; Tilak KV; Saxena AK; Dey R; Singh CS Microbiol Res; 2001; 156(3):209-23. PubMed ID: 11716210 [TBL] [Abstract][Full Text] [Related]
20. A Whole-Cell Biosensor for Detection of 2,4-Diacetylphloroglucinol (DAPG)-Producing Bacteria from Grassland Soil. Hansen ML; He Z; Wibowo M; Jelsbak L Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33218996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]