These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 1706513)
1. DNA flow cytometric study of the hyperplastic and neoplastic canine prostate. Madewell BR; Deitch AD; Higgins RJ; Marks SL; deVere White RW Prostate; 1991; 18(2):173-9. PubMed ID: 1706513 [TBL] [Abstract][Full Text] [Related]
2. Significance of abnormal diploid DNA histograms in localized prostate cancer and adjacent benign prostatic tissue. Deitch AD; Miller GJ; deVere White RW Cancer; 1993 Sep; 72(5):1692-700. PubMed ID: 7688657 [TBL] [Abstract][Full Text] [Related]
3. Flow cytometric DNA ploidy analysis in canine transitional cell carcinoma of urinary bladders. Clemo FA; DeNicola DB; Carlton WW; Morrison WB; Walker E Vet Pathol; 1994 Mar; 31(2):207-15. PubMed ID: 8203084 [TBL] [Abstract][Full Text] [Related]
4. Clear cell cribriform hyperplasia of the prostate. Immunohistochemical and DNA flow cytometric study. Frauenhoffer EE; Ro JY; el-Naggar AK; Ordóñez NG; Ayala AG Am J Clin Pathol; 1991 Apr; 95(4):446-53. PubMed ID: 1707587 [TBL] [Abstract][Full Text] [Related]
5. Role of canine basal cells in postnatal prostatic development, induction of hyperplasia, and sex hormone-stimulated growth; and the ductal origin of carcinoma. Leav I; Schelling KH; Adams JY; Merk FB; Alroy J Prostate; 2001 Aug; 48(3):210-24. PubMed ID: 11494337 [TBL] [Abstract][Full Text] [Related]
6. Immunohistochemical Expression of Angiogenic Factors by Neoplastic Epithelial Cells Is Associated With Canine Prostatic Carcinogenesis. Palmieri C Vet Pathol; 2015 Jul; 52(4):607-13. PubMed ID: 25281650 [TBL] [Abstract][Full Text] [Related]
7. DNA heterogeneity in prostatic adenocarcinoma. A DNA flow cytometric mapping study with whole organ sections of prostate. O'Malley FP; Grignon DJ; Keeney M; Kerkvliet N; McLean C Cancer; 1993 May; 71(9):2797-802. PubMed ID: 8467459 [TBL] [Abstract][Full Text] [Related]
8. Near-diploidy: a new prognostic factor for clinically localized prostate cancer treated with external beam radiation therapy. Pollack A; Zagars GK; el-Naggar AK; Gauwitz MD; Terry NH Cancer; 1994 Apr; 73(7):1895-903. PubMed ID: 7511039 [TBL] [Abstract][Full Text] [Related]
9. The distribution of oestrogen receptors in normal, hyperplastic and neoplastic canine prostate, as demonstrated immunohistochemically. Grieco V; Riccardi E; Rondena M; Romussi S; Stefanello D; Finazzi M J Comp Pathol; 2006 Jul; 135(1):11-6. PubMed ID: 16815431 [TBL] [Abstract][Full Text] [Related]
10. DNA heterogeneity determined by flow cytometry in prostatic adenocarcinoma--necessitating multiple site analysis. Warzynski MJ; Soechtig CE; Maatman TJ; Goldsmith LC; Grobbel MA; Carothers GG; Shockley KF Prostate; 1995 Dec; 27(6):329-35. PubMed ID: 7501545 [TBL] [Abstract][Full Text] [Related]
11. DNA distribution in the prostate. Normal gland, benign and premalignant lesions, and subsequent adenocarcinomas. Berner A; Danielsen HE; Pettersen EO; Fosså SD; Reith A; Nesland JM Anal Quant Cytol Histol; 1993 Aug; 15(4):247-52. PubMed ID: 7691062 [TBL] [Abstract][Full Text] [Related]
12. Transrectal fine needle aspiration biopsy of the prostate combining cytomorphologic, DNA ploidy status and cell cycle distribution studies. Paz-Bouza JI; Orfao A; Abad M; Ciudad J; Garcia MC; Lopez A; Bullon A Pathol Res Pract; 1994 Aug; 190(7):682-9. PubMed ID: 7528913 [TBL] [Abstract][Full Text] [Related]
13. DNA ploidy and proliferation heterogeneity in human prostate cancers. Shankey TV; Jin JK; Dougherty S; Flanigan RC; Graham S; Pyle JM Cytometry; 1995 Sep; 21(1):30-9. PubMed ID: 8529468 [TBL] [Abstract][Full Text] [Related]
14. Methodologic sources of errors in image and flow cytometric DNA assessments of the malignancy potential of prostatic carcinoma. Falkmer UG Hum Pathol; 1992 Apr; 23(4):360-7. PubMed ID: 1563736 [TBL] [Abstract][Full Text] [Related]
15. DNA and S-phase fraction analysis by flow cytometry in prostate cancer. Clinicopathologic implications. Tinari N; Natoli C; Angelucci D; Tenaglia R; Fiorentino B; Di Stefano P; Amatetti C; Zezza A; Nicolai M; Iacobelli S Cancer; 1993 Feb; 71(4):1289-96. PubMed ID: 8435806 [TBL] [Abstract][Full Text] [Related]
16. Altered expression of p53, but not Rb, is involved in canine prostatic carcinogenesis. Pagliarone S; Frattone L; Pirocchi V; Della Salda L; Palmieri C Res Vet Sci; 2016 Apr; 105():195-9. PubMed ID: 27033932 [TBL] [Abstract][Full Text] [Related]
17. Flow cytometric DNA analysis of ulcerative colitis using paraffin-embedded biopsy specimens: comparison with morphology and DNA analysis of fresh samples. Hartmann DP; Montgomery EA; Carr NJ; Gupta PK; Azumi N Am J Gastroenterol; 1995 Apr; 90(4):590-6. PubMed ID: 7717317 [TBL] [Abstract][Full Text] [Related]
18. Flow cytometric DNA analysis of parathyroid tumors with special reference to its diagnostic and prognostic value in parathyroid carcinoma. Obara T; Fujimoto Y; Hirayama A; Kanaji Y; Ito Y; Kodama T; Ogata T Cancer; 1990 Apr; 65(8):1789-93. PubMed ID: 1969327 [TBL] [Abstract][Full Text] [Related]
19. Prognostic significance of DNA ploidy in carcinoma of prostate. Dejter SW; Cunningham RE; Noguchi PD; Jones RV; Moul JW; McLeod DG; Lynch JH Urology; 1989 May; 33(5):361-6. PubMed ID: 2711553 [TBL] [Abstract][Full Text] [Related]
20. DNA ploidy in prostate cancer: potential measurement as a surrogate endpoint biomarker. Lieber MM J Cell Biochem Suppl; 1994; 19():246-8. PubMed ID: 7529855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]