BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 17065161)

  • 1. Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability: a review.
    Kim GJ; Chandrasekaran K; Morgan WF
    Mutagenesis; 2006 Nov; 21(6):361-7. PubMed ID: 17065161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation-induced genomic instability: are epigenetic mechanisms the missing link?
    Aypar U; Morgan WF; Baulch JE
    Int J Radiat Biol; 2011 Feb; 87(2):179-91. PubMed ID: 21039330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation and chemotherapy bystander effects induce early genomic instability events: telomere shortening and bridge formation coupled with mitochondrial dysfunction.
    Gorman S; Tosetto M; Lyng F; Howe O; Sheahan K; O'Donoghue D; Hyland J; Mulcahy H; O'Sullivan J
    Mutat Res; 2009 Oct; 669(1-2):131-8. PubMed ID: 19540247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability.
    Kim GJ; Fiskum GM; Morgan WF
    Cancer Res; 2006 Nov; 66(21):10377-83. PubMed ID: 17079457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased level of oxidative stress in genomically unstable cell clones.
    Dahle J; Kvam E
    J Photochem Photobiol B; 2004 Mar; 74(1):23-8. PubMed ID: 15043843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling mitochondrial proteins in radiation-induced genome-unstable cell lines with persistent oxidative stress by mass spectrometry.
    Miller JH; Jin S; Morgan WF; Yang A; Wan Y; Aypar U; Peters JS; Springer DL
    Radiat Res; 2008 Jun; 169(6):700-6. PubMed ID: 18494543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistent oxidative stress in chromosomally unstable cells.
    Limoli CL; Giedzinski E; Morgan WF; Swarts SG; Jones GD; Hyun W
    Cancer Res; 2003 Jun; 63(12):3107-11. PubMed ID: 12810636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term persistence of X-ray-induced genomic instability in quiescent normal human diploid cells.
    Suzuki K; Kashino G; Kodama S; Watanabe M
    Mutat Res; 2009 Dec; 671(1-2):33-9. PubMed ID: 19712688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation-induced DNA damage and delayed induced genomic instability.
    Suzuki K; Ojima M; Kodama S; Watanabe M
    Oncogene; 2003 Oct; 22(45):6988-93. PubMed ID: 14557802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delayed activation of DNA damage checkpoint and radiation-induced genomic instability.
    Suzuki K; Ojima M; Kodama S; Watanabe M
    Mutat Res; 2006 May; 597(1-2):73-7. PubMed ID: 16417909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission of genomic instability from a single irradiated human chromosome to the progeny of unirradiated cells.
    Mukaida N; Kodama S; Suzuki K; Oshimura M; Watanabe M
    Radiat Res; 2007 Jun; 167(6):675-81. PubMed ID: 17523850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interleukin 8 exhibits a pro-mitogenic and pro-survival role in radiation induced genomically unstable cells.
    Laiakis EC; Baulch JE; Morgan WF
    Mutat Res; 2008 Apr; 640(1-2):74-81. PubMed ID: 18242642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation.
    Yoshida T; Goto S; Kawakatsu M; Urata Y; Li TS
    Free Radic Res; 2012 Feb; 46(2):147-53. PubMed ID: 22126415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P53 oncosuppressor influences selection of genomic imbalances in response to ionizing radiations in human osteosarcoma cell line SAOS-2.
    Zuffa E; Mancini M; Brusa G; Pagnotta E; Hattinger CM; Serra M; Remondini D; Castellani G; Corrado P; Barbieri E; Santucci MA
    Int J Radiat Biol; 2008 Jul; 84(7):591-601. PubMed ID: 18661375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-lasting genomic instability following arsenite exposure in mammalian cells: the role of reactive oxygen species.
    Sciandrello G; Mauro M; Catanzaro I; Saverini M; Caradonna F; Barbata G
    Environ Mol Mutagen; 2011 Aug; 52(7):562-8. PubMed ID: 21520292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: the pivotal role of mitochondria.
    Szumiel I
    Int J Radiat Biol; 2015 Jan; 91(1):1-12. PubMed ID: 24937368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted and nontargeted effects of low-dose ionizing radiation on delayed genomic instability in human cells.
    Huang L; Kim PM; Nickoloff JA; Morgan WF
    Cancer Res; 2007 Feb; 67(3):1099-104. PubMed ID: 17283143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice.
    Bonnard C; Durand A; Peyrol S; Chanseaume E; Chauvin MA; Morio B; Vidal H; Rieusset J
    J Clin Invest; 2008 Feb; 118(2):789-800. PubMed ID: 18188455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic instability induced by ionizing radiation.
    Morgan WF; Day JP; Kaplan MI; McGhee EM; Limoli CL
    Radiat Res; 1996 Sep; 146(3):247-58. PubMed ID: 8752302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplex polymerase chain reaction analysis of UV-A- and UV-B-induced delayed and early mutations in V79 Chinese hamster cells.
    Dahle J; Noordhuis P; Stokke T; Svendsrud DH; Kvam E
    Photochem Photobiol; 2005; 81(1):114-9. PubMed ID: 15453821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.