These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 17065339)

  • 1. Interactions between delivery, transport, and phosphorylation of glucose in governing uptake into human skeletal muscle.
    Bertoldo A; Pencek RR; Azuma K; Price JC; Kelley C; Cobelli C; Kelley DE
    Diabetes; 2006 Nov; 55(11):3028-37. PubMed ID: 17065339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose-responsive insulin regulation of glucose transport in human skeletal muscle.
    Pencek RR; Bertoldo A; Price J; Kelley C; Cobelli C; Kelley DE
    Am J Physiol Endocrinol Metab; 2006 Jun; 290(6):E1124-30. PubMed ID: 16390860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative assessment of glucose transport in human skeletal muscle: dynamic positron emission tomography imaging of [O-methyl-11C]3-O-methyl-D-glucose.
    Bertoldo A; Price J; Mathis C; Mason S; Holt D; Kelley C; Cobelli C; Kelley DE
    J Clin Endocrinol Metab; 2005 Mar; 90(3):1752-9. PubMed ID: 15613423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions among glucose delivery, transport, and phosphorylation that underlie skeletal muscle insulin resistance in obesity and type 2 Diabetes: studies with dynamic PET imaging.
    Goodpaster BH; Bertoldo A; Ng JM; Azuma K; Pencek RR; Kelley C; Price JC; Cobelli C; Kelley DE
    Diabetes; 2014 Mar; 63(3):1058-68. PubMed ID: 24222345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose transport and phosphorylation in skeletal muscle in obesity: insight from a muscle-specific positron emission tomography model.
    Williams KV; Bertoldo A; Mattioni B; Price JC; Cobelli C; Kelley DE
    J Clin Endocrinol Metab; 2003 Mar; 88(3):1271-9. PubMed ID: 12629118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin regulation of glucose transport and phosphorylation in skeletal muscle assessed by PET.
    Kelley DE; Williams KV; Price JC
    Am J Physiol; 1999 Aug; 277(2):E361-9. PubMed ID: 10444433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise training favors increased insulin-stimulated glucose uptake in skeletal muscle in contrast to adipose tissue: a randomized study using FDG PET imaging.
    Reichkendler MH; Auerbach P; Rosenkilde M; Christensen AN; Holm S; Petersen MB; Lagerberg A; Larsson HB; Rostrup E; Mosbech TH; Sjödin A; Kjaer A; Ploug T; Hoejgaard L; Stallknecht B
    Am J Physiol Endocrinol Metab; 2013 Aug; 305(4):E496-506. PubMed ID: 23800880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the lumped constant for [18F] fluorodeoxyglucose in human skeletal muscle.
    Kelley DE; Williams KV; Price JC; Goodpaster B
    J Nucl Med; 1999 Nov; 40(11):1798-804. PubMed ID: 10565773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lumped constant for [(18)F]fluorodeoxyglucose in skeletal muscles of obese and nonobese humans.
    Peltoniemi P; Lönnroth P; Laine H; Oikonen V; Tolvanen T; Grönroos T; Strindberg L; Knuuti J; Nuutila P
    Am J Physiol Endocrinol Metab; 2000 Nov; 279(5):E1122-30. PubMed ID: 11052968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weight loss-induced plasticity of glucose transport and phosphorylation in the insulin resistance of obesity and type 2 diabetes.
    Williams KV; Bertoldo A; Kinahan P; Cobelli C; Kelley DE
    Diabetes; 2003 Jul; 52(7):1619-26. PubMed ID: 12829624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for dissociation of insulin stimulation of blood flow and glucose uptake in human skeletal muscle: studies using [15O]H2O, [18F]fluoro-2-deoxy-D-glucose, and positron emission tomography.
    Raitakari M; Nuutila P; Ruotsalainen U; Laine H; Teräs M; Iida H; Mäkimattila S; Utriainen T; Oikonen V; Sipilä H; Haaparanta M; Solin O; Wegelius U; Knuuti J; Yki-Järvinen H
    Diabetes; 1996 Nov; 45(11):1471-7. PubMed ID: 8866549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic PET imaging reveals heterogeneity of skeletal muscle insulin resistance.
    Ng JM; Bertoldo A; Minhas DS; Helbling NL; Coen PM; Price JC; Cobelli C; Kelley DE; Goodpaster BH
    J Clin Endocrinol Metab; 2014 Jan; 99(1):E102-6. PubMed ID: 24170108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of impaired glucose transport and phosphorylation in skeletal muscle insulin resistance: a dose-response assessment using positron emission tomography.
    Williams KV; Price JC; Kelley DE
    Diabetes; 2001 Sep; 50(9):2069-79. PubMed ID: 11522673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limitations to exercise- and maximal insulin-stimulated muscle glucose uptake.
    Halseth AE; Bracy DP; Wasserman DH
    J Appl Physiol (1985); 1998 Dec; 85(6):2305-13. PubMed ID: 9843557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle.
    Kelley DE; Mintun MA; Watkins SC; Simoneau JA; Jadali F; Fredrickson A; Beattie J; Thériault R
    J Clin Invest; 1996 Jun; 97(12):2705-13. PubMed ID: 8675680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise restores skeletal muscle glucose delivery but not insulin-mediated glucose transport and phosphorylation in obese subjects.
    Slimani L; Oikonen V; Hällsten K; Savisto N; Knuuti J; Nuutila P; Iozzo P
    J Clin Endocrinol Metab; 2006 Sep; 91(9):3394-403. PubMed ID: 16772346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced stimulation of glucose uptake by insulin increases exercise-stimulated glucose uptake in skeletal muscle in humans: studies using [15O]O2, [15O]H2O, [18F]fluoro-deoxy-glucose, and positron emission tomography.
    Nuutila P; Peltoniemi P; Oikonen V; Larmola K; Kemppainen J; Takala T; Sipilä H; Oksanen A; Ruotsalainen U; Bolli GB; Yki-Järvinen H
    Diabetes; 2000 Jul; 49(7):1084-91. PubMed ID: 10909962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human adipose tissue glucose uptake determined using [(18)F]-fluoro-deoxy-glucose ([(18)F]FDG) and PET in combination with microdialysis.
    Virtanen KA; Peltoniemi P; Marjamäki P; Asola M; Strindberg L; Parkkola R; Huupponen R; Knuuti J; Lönnroth P; Nuutila P
    Diabetologia; 2001 Dec; 44(12):2171-9. PubMed ID: 11793018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of blood flow in regulating insulin-stimulated glucose uptake in humans. Studies using bradykinin, [15O]water, and [18F]fluoro-deoxy-glucose and positron emission tomography.
    Nuutila P; Raitakari M; Laine H; Kirvelä O; Takala T; Utriainen T; Mäkimattila S; Pitkänen OP; Ruotsalainen U; Iida H; Knuuti J; Yki-Järvinen H
    J Clin Invest; 1996 Apr; 97(7):1741-7. PubMed ID: 8601640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification, Variability, and Reproducibility of Basal Skeletal Muscle Glucose Uptake in Healthy Humans Using 18F-FDG PET/CT.
    Gheysens O; Postnov A; Deroose CM; Vandermeulen C; de Hoon J; Declercq R; Dennie J; Mixson L; De Lepeleire I; Van Laere K; Klimas M; Chakravarthy MV
    J Nucl Med; 2015 Oct; 56(10):1520-6. PubMed ID: 26229142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.