BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 17065381)

  • 21. Susceptibility to viral infections in chronic obstructive pulmonary disease: role of epithelial cells.
    Sajjan US
    Curr Opin Pulm Med; 2013 Mar; 19(2):125-32. PubMed ID: 23361194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mesenchymal stem cell therapy for the treatment of chronic obstructive pulmonary disease.
    D'Agostino B; Sullo N; Siniscalco D; De Angelis A; Rossi F
    Expert Opin Biol Ther; 2010 May; 10(5):681-7. PubMed ID: 20384521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lung epithelial CCAAT/enhancer-binding protein-β is necessary for the integrity of inflammatory responses to cigarette smoke.
    Didon L; Barton JL; Roos AB; Gaschler GJ; Bauer CM; Berg T; Stämpfli MR; Nord M
    Am J Respir Crit Care Med; 2011 Jul; 184(2):233-42. PubMed ID: 21562127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency.
    Richmond BW; Brucker RM; Han W; Du RH; Zhang Y; Cheng DS; Gleaves L; Abdolrasulnia R; Polosukhina D; Clark PE; Bordenstein SR; Blackwell TS; Polosukhin VV
    Nat Commun; 2016 Apr; 7():11240. PubMed ID: 27046438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of tumor necrosis factor-α in the lungs alters immune response, matrix remodeling, and repair and maintenance pathways.
    Thomson EM; Williams A; Yauk CL; Vincent R
    Am J Pathol; 2012 Apr; 180(4):1413-30. PubMed ID: 22322299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. {alpha}7 nicotinic acetylcholine receptor regulates airway epithelium differentiation by controlling basal cell proliferation.
    Maouche K; Polette M; Jolly T; Medjber K; Cloëz-Tayarani I; Changeux JP; Burlet H; Terryn C; Coraux C; Zahm JM; Birembaut P; Tournier JM
    Am J Pathol; 2009 Nov; 175(5):1868-82. PubMed ID: 19808646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remodeling and inflammation of bronchi in asthma and chronic obstructive pulmonary disease.
    Jeffery PK
    Proc Am Thorac Soc; 2004; 1(3):176-83. PubMed ID: 16113432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms and experimental models of chronic obstructive pulmonary disease exacerbations.
    Mallia P; Johnston SL
    Proc Am Thorac Soc; 2005; 2(4):361-6; discussion 371-2. PubMed ID: 16267363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in understanding inflammation and remodeling in the airways in chronic obstructive pulmonary disease.
    Sohal SS; Ward C; Danial W; Wood-Baker R; Walters EH
    Expert Rev Respir Med; 2013 Jun; 7(3):275-88. PubMed ID: 23734649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increased intraepithelial T-cells in stable COPD.
    Löfdahl MJ; Roos-Engstrand E; Pourazar J; Bucht A; Dahlen B; Elmberger G; Blomberg A; Sköld CM
    Respir Med; 2008 Dec; 102(12):1812-8. PubMed ID: 18706796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphological study of bronchial mucosa in the chronic obstructive pulmonary disease under the influence of therapeutic algorithm.
    Nini G; Raica M; Neamţiu V; Onel M
    Rom J Morphol Embryol; 2012; 53(1):121-34. PubMed ID: 22395511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The airway epithelium: more than just a structural barrier.
    Tam A; Wadsworth S; Dorscheid D; Man SF; Sin DD
    Ther Adv Respir Dis; 2011 Aug; 5(4):255-73. PubMed ID: 21372121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rationale and emerging approaches for targeting lung repair and regeneration in the treatment of chronic obstructive pulmonary disease.
    Rennard SI; Wachenfeldt Kv
    Proc Am Thorac Soc; 2011 Aug; 8(4):368-75. PubMed ID: 21816994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deciphering Respiratory-Virus-Associated Interferon Signaling in COPD Airway Epithelium.
    Guo-Parke H; Linden D; Weldon S; Kidney JC; Taggart CC
    Medicina (Kaunas); 2022 Jan; 58(1):. PubMed ID: 35056429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell death, remodeling, and repair in chronic obstructive pulmonary disease?
    Henson PM; Vandivier RW; Douglas IS
    Proc Am Thorac Soc; 2006 Nov; 3(8):713-7. PubMed ID: 17065379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Smoke and C5a induce airway epithelial intercellular adhesion molecule-1 and cell adhesion.
    Floreani AA; Wyatt TA; Stoner J; Sanderson SD; Thompson EG; Allen-Gipson D; Heires AJ
    Am J Respir Cell Mol Biol; 2003 Oct; 29(4):472-82. PubMed ID: 12714373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systemic and upper and lower airway inflammation at exacerbation of chronic obstructive pulmonary disease.
    Hurst JR; Perera WR; Wilkinson TM; Donaldson GC; Wedzicha JA
    Am J Respir Crit Care Med; 2006 Jan; 173(1):71-8. PubMed ID: 16179639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Airway smooth muscle and immunomodulation in acute exacerbations of airway disease.
    Koziol-White CJ; Panettieri RA
    Immunol Rev; 2011 Jul; 242(1):178-85. PubMed ID: 21682745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Double-stranded RNA exacerbates pulmonary allergic reaction through TLR3: implication of airway epithelium and dendritic cells.
    Torres D; Dieudonné A; Ryffel B; Vilain E; Si-Tahar M; Pichavant M; Lassalle P; Trottein F; Gosset P
    J Immunol; 2010 Jul; 185(1):451-9. PubMed ID: 20505141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute inflammatory response and remodeling of airway epithelium after subspecies B1 human adenovirus infection of the mouse lower respiratory tract.
    Kajon AE; Gigliotti AP; Harrod KS
    J Med Virol; 2003 Oct; 71(2):233-44. PubMed ID: 12938198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.