BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17065530)

  • 21. Spatiotemporal gene expression patterns reveal molecular relatedness between retinal laminae.
    Jiang D; Burger CA; Casasent AK; Albrecht NE; Li F; Samuel MA
    J Comp Neurol; 2020 Apr; 528(5):729-755. PubMed ID: 31609468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acute exposure of 532 nm laser differentially regulates skin tissue transcription factors.
    Tulsawani R; Sharma P; Sethy NK; Kumari P; Ganju L; Prakash S; Chouhan S
    PLoS One; 2020; 15(3):e0230175. PubMed ID: 32191734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designed switch from covalent to non-covalent inhibitors of carboxylesterase Notum activity.
    Atkinson BN; Willis NJ; Zhao Y; Patel C; Frew S; Costelloe K; Magno L; Svensson F; Jones EY; Fish PV
    Eur J Med Chem; 2023 May; 251():115132. PubMed ID: 36934521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Hox Gene
    Kurland M; O'Meara B; Tucker DK; Ackley BD
    J Dev Biol; 2020 Mar; 8(1):. PubMed ID: 32138237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrative analyses of conserved WNT clusters and their co-operative behaviour in human breast cancer.
    Qurrat-Ul-Ain ; Seemab U; Nawaz S; Rashid S
    Bioinformation; 2011; 7(7):339-46. PubMed ID: 22355234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Into the blue: the importance of murine lacZ gene expression profiling in understanding and treating human disease.
    Armit C
    Dis Model Mech; 2015 Nov; 8(11):1341-3. PubMed ID: 26512121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Wnt/β-catenin modulated genes in the developing retina.
    Ha A; Perez-Iratxeta C; Liu H; Mears AJ; Wallace VA
    Mol Vis; 2012; 18():645-56. PubMed ID: 22509096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wnt/β-Catenin Signaling Pathway Is Necessary for the Specification but Not the Maintenance of the Mouse Retinal Pigment Epithelium.
    Kim JM; Min KW; Kim YJ; Smits R; Basler K; Kim JW
    Mol Cells; 2023 Jul; 46(7):441-450. PubMed ID: 37190767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Usher syndrome 1C protein harmonin regulates canonical Wnt signaling.
    Schäfer J; Wenck N; Janik K; Linnert J; Stingl K; Kohl S; Nagel-Wolfrum K; Wolfrum U
    Front Cell Dev Biol; 2023; 11():1130058. PubMed ID: 36846582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell Sources for Retinal Regeneration: Implication for Data Translation in Biomedicine of the Eye.
    Grigoryan EN
    Cells; 2022 Nov; 11(23):. PubMed ID: 36497013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retinal Stem Cell 'Retirement Plans': Growth, Regulation and Species Adaptations in the Retinal Ciliary Marginal Zone.
    Miles A; Tropepe V
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34207050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Meis homeobox genes control progenitor competence in the retina.
    Dupacova N; Antosova B; Paces J; Kozmik Z
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33723039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New Insights Into the Intricacies of Proneural Gene Regulation in the Embryonic and Adult Cerebral Cortex.
    Oproescu AM; Han S; Schuurmans C
    Front Mol Neurosci; 2021; 14():642016. PubMed ID: 33658912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Retinal organoids: a window into human retinal development.
    O'Hara-Wright M; Gonzalez-Cordero A
    Development; 2020 Dec; 147(24):. PubMed ID: 33361444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Limitations and Promise of Retinal Tissue From Human Pluripotent Stem Cells for Developing Therapies of Blindness.
    Singh RK; Nasonkin IO
    Front Cell Neurosci; 2020; 14():179. PubMed ID: 33132839
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PAX6D instructs neural retinal specification from human embryonic stem cell-derived neuroectoderm.
    Tao Y; Cao J; Li M; Hoffmann B; Xu K; Chen J; Lu X; Guo F; Li X; Phillips MJ; Gamm DM; Chen H; Zhang SC
    EMBO Rep; 2020 Sep; 21(9):e50000. PubMed ID: 32700445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loss of β-catenin via activated GSK3β causes diabetic retinal neurodegeneration by instigating a vicious cycle of oxidative stress-driven mitochondrial impairment.
    Shu XS; Zhu H; Huang X; Yang Y; Wang D; Zhang Y; Zhang W; Ying Y
    Aging (Albany NY); 2020 Jun; 12(13):13437-13462. PubMed ID: 32575075
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retinal ganglion cell loss in kinesin-1 cargo Alcadein α deficient mice.
    Nakano Y; Hirooka K; Chiba Y; Ueno M; Ojima D; Hossain MR; Takahashi H; Yamamoto T; Kiuchi Y
    Cell Death Dis; 2020 Mar; 11(3):166. PubMed ID: 32127528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of Adult Neural Retina Extracellular Vesicle Release, RNA Transport and Proteomic Cargo.
    Mighty J; Zhou J; Benito-Martin A; Sauma S; Hanna S; Onwumere O; Shi C; Muntzel M; Sauane M; Young M; Molina H; Cox D; Redenti S
    Invest Ophthalmol Vis Sci; 2020 Feb; 61(2):30. PubMed ID: 32084266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamaic changes of proliferation and apoptosis in rat retina development.
    Shi W; Wang R; Niu S; Li Y; Ma C; Zhang G; Cong B
    Int J Clin Exp Pathol; 2017; 10(12):11679-11684. PubMed ID: 31966527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.