These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 17065742)

  • 1. Metallic open-cell foams--a promising approach to fabricating good medical implants.
    Ohrndorf A; Krupp U; Christ HJ
    Technol Health Care; 2006; 14(4-5):201-8. PubMed ID: 17065742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundamental mechanisms of fatigue and fracture.
    Christ HJ
    Stud Health Technol Inform; 2008; 133():56-67. PubMed ID: 18376013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ratchetting of porcine skin under uniaxial cyclic loading.
    Kang G; Wu X
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):498-506. PubMed ID: 21316638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility of 17-4 PH stainless steel foam for implant applications.
    Mutlu I; Oktay E
    Biomed Mater Eng; 2011; 21(4):223-33. PubMed ID: 22182790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Damage mechanisms and failure modes of cortical bone under components of physiological loading.
    George WT; Vashishth D
    J Orthop Res; 2005 Sep; 23(5):1047-53. PubMed ID: 16140189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of oxidation treatment on fatigue and fatigue-induced damage of commercially pure titanium.
    Leinenbach C; Eifler D
    Acta Biomater; 2009 Sep; 5(7):2810-9. PubMed ID: 19394905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monotonic and cyclic loading behavior of porous scaffolds made from poly(para-phenylene) for orthopedic applications.
    Hoyt AJ; Yakacki CM; Fertig RS; Dana Carpenter R; Frick CP
    J Mech Behav Biomed Mater; 2015 Jan; 41():136-48. PubMed ID: 25460410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compression fatigue behavior of laser processed porous NiTi alloy.
    Bernard S; Krishna Balla V; Bose S; Bandyopadhyay A
    J Mech Behav Biomed Mater; 2012 Sep; 13():62-8. PubMed ID: 22842276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of open-pore titanium foam.
    Imwinkelried T
    J Biomed Mater Res A; 2007 Jun; 81(4):964-70. PubMed ID: 17252551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation behaviour of bovine cancellous bone.
    Dendorfer S; Maier HJ; Hammer J
    Technol Health Care; 2006; 14(6):549-56. PubMed ID: 17148868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical biocompatibilities of titanium alloys for biomedical applications.
    Niinomi M
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):30-42. PubMed ID: 19627769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue behavior of TiNi foams processed by the magnesium space holder technique.
    Nakaş GI; Dericioglu AF; Bor S
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2017-23. PubMed ID: 22098901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tannin-based rigid foams: a survey of chemical and physical properties.
    Tondi G; Zhao W; Pizzi A; Du G; Fierro V; Celzard A
    Bioresour Technol; 2009 Nov; 100(21):5162-9. PubMed ID: 19576764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromotion at the fracture site after tibial nailing with four unreamed small-diameter nails--a biomechanical study using a distal tibia fracture model.
    Schüller M; Weninger P; Tschegg E; Jamek M; Redl H; Stanzl-Tschegg S
    J Trauma; 2009 May; 66(5):1391-7. PubMed ID: 19430244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro fatigue testing of prosthetic ligaments: a new concept.
    Drouin G; Masson M; Yahia L
    Biomed Mater Eng; 1991; 1(3):159-65. PubMed ID: 1842514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape memory polymer foams for cerebral aneurysm reparation: effects of plasma sterilization on physical properties and cytocompatibility.
    De Nardo L; Alberti R; Cigada A; Yahia L; Tanzi MC; Farè S
    Acta Biomater; 2009 Jun; 5(5):1508-18. PubMed ID: 19136318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a biaxial compression device for biological samples: preliminary experimental results for a closed cell foam.
    Little JP; Tevelen G; Adam CJ; Evans JH; Pearcy MJ
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):305-9. PubMed ID: 19627835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyurethane foams: effects of specimen size when determining cushioning stiffness.
    Todd BA; Smith SL; Vongpaseuth T
    J Rehabil Res Dev; 1998 Jun; 35(2):219-24. PubMed ID: 9651894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical characterization of ultra-high molecular weight polyethylene-hydroxyapatite nanocomposites.
    Crowley J; Chalivendra VB
    Biomed Mater Eng; 2008; 18(3):149-60. PubMed ID: 18725695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.