These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17065744)

  • 1. The simplification of the muscle force prediction using sensitivity analyses.
    Vejpustková J; Vilímek M; Sochor M
    Technol Health Care; 2006; 14(4-5):215-8. PubMed ID: 17065744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of joint moments using a neural network model of muscle activations from EMG signals.
    Wang L; Buchanan TS
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):30-7. PubMed ID: 12173737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S; Gutierrez-Farewik EM
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time pinch force estimation by surface electromyography using an artificial neural network.
    Choi C; Kwon S; Park W; Lee HD; Kim J
    Med Eng Phys; 2010 Jun; 32(5):429-36. PubMed ID: 20430679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces.
    Vilimek M
    Acta Bioeng Biomech; 2014; 16(3):119-27. PubMed ID: 25307446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of EMG processing on biomechanical models of muscle joint systems: sensitivity of trunk muscle moments, spinal forces, and stability.
    Staudenmann D; Potvin JR; Kingma I; Stegeman DF; van Dieën JH
    J Biomech; 2007; 40(4):900-9. PubMed ID: 16765965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of handgrip forces using surface EMG of forearm muscles.
    Hoozemans MJ; van Dieën JH
    J Electromyogr Kinesiol; 2005 Aug; 15(4):358-66. PubMed ID: 15811606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of elbow-induced wrist force with EMG signals using fast orthogonal search.
    Mobasser F; Eklund JM; Hashtrudi-Zaad K
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):683-93. PubMed ID: 17405375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of artificial neural nets in clinical biomechanics.
    Schöllhorn WI
    Clin Biomech (Bristol, Avon); 2004 Nov; 19(9):876-98. PubMed ID: 15475120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial neural networks in motor control research.
    Perl J
    Clin Biomech (Bristol, Avon); 2004 Nov; 19(9):873-5. PubMed ID: 15475119
    [No Abstract]   [Full Text] [Related]  

  • 12. Intraarticular pressure distribution in the talocrural joint is related to lower leg muscle forces.
    Potthast W; Lersch C; Segesser B; Koebke J; Brüggemann GP
    Clin Biomech (Bristol, Avon); 2008 Jun; 23(5):632-9. PubMed ID: 18082921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Velocity-dependent cost function for the prediction of force sharing among synergistic muscles in a one degree of freedom model.
    Schappacher-Tilp G; Binding P; Braverman E; Herzog W
    J Biomech; 2009 Mar; 42(5):657-60. PubMed ID: 19232619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based estimation of muscle forces exerted during movements.
    Erdemir A; McLean S; Herzog W; van den Bogert AJ
    Clin Biomech (Bristol, Avon); 2007 Feb; 22(2):131-54. PubMed ID: 17070969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ten years muscle-bone hypothesis: what have we learned so far?--almost a festschrift--.
    Rittweger J
    J Musculoskelet Neuronal Interact; 2008; 8(2):174-8. PubMed ID: 18622086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle forces during running predicted by gradient-based and random search static optimisation algorithms.
    Miller RH; Gillette JC; Derrick TR; Caldwell GE
    Comput Methods Biomech Biomed Engin; 2009 Apr; 12(2):217-25. PubMed ID: 18828028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. History dependence of skeletal muscle force production: implications for movement control.
    Herzog W
    Hum Mov Sci; 2004 Nov; 23(5):591-604. PubMed ID: 15589623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performances of hill-type and neural network muscle models-toward a myosignal-based exoskeleton.
    Rosen J; Fuchs MB; Arcan M
    Comput Biomed Res; 1999 Oct; 32(5):415-39. PubMed ID: 10529300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independent component analysis of high-density electromyography in muscle force estimation.
    Staudenmann D; Daffertshofer A; Kingma I; Stegeman DF; van Dieën JH
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):751-4. PubMed ID: 17405383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of power spectrum density function of EMG during muscle contraction below 30%MVC.
    Roman-Liu D; Konarska M
    J Electromyogr Kinesiol; 2009 Oct; 19(5):864-74. PubMed ID: 18590966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.