These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 17066171)

  • 1. T cell chemotaxis in a simple microfluidic device.
    Lin F; Butcher EC
    Lab Chip; 2006 Nov; 6(11):1462-9. PubMed ID: 17066171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chapter 15. A microfluidics-based method for chemoattractant gradients.
    Lin F
    Methods Enzymol; 2009; 461():333-47. PubMed ID: 19480926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell chemotaxis on paper for diagnostics.
    Walsh DI; Lalli ML; Kassas JM; Asthagiri AR; Murthy SK
    Anal Chem; 2015 Jun; 87(11):5505-10. PubMed ID: 25938457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of CCR7 mediated T cell transfectant migration using a microfluidic gradient generator.
    Wu X; Wu J; Li H; Legler DF; Marshall AJ; Lin F
    J Immunol Methods; 2015 Apr; 419():9-17. PubMed ID: 25733353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Chemotaxis and Cell-Cell Interactions in Cancer with Microfluidic Devices.
    Sai J; Rogers M; Hockemeyer K; Wikswo JP; Richmond A
    Methods Enzymol; 2016; 570():19-45. PubMed ID: 26921940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CCL19 and CXCL12 trigger in vitro chemotaxis of human mantle cell lymphoma B cells.
    Corcione A; Arduino N; Ferretti E; Raffaghello L; Roncella S; Rossi D; Fedeli F; Ottonello L; Trentin L; Dallegri F; Semenzato G; Pistoia V
    Clin Cancer Res; 2004 Feb; 10(3):964-71. PubMed ID: 14871974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-scale microfluidics to study 3D chemotaxis at the single cell level.
    Frick C; Dettinger P; Renkawitz J; Jauch A; Berger CT; Recher M; Schroeder T; Mehling M
    PLoS One; 2018; 13(6):e0198330. PubMed ID: 29879160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemorepulsion and thymocyte emigration.
    Cyster JG
    J Clin Invest; 2002 Apr; 109(8):1011-2. PubMed ID: 11956237
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator.
    Walker GM; Sai J; Richmond A; Stremler M; Chung CY; Wikswo JP
    Lab Chip; 2005 Jun; 5(6):611-8. PubMed ID: 15915253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear flow-dependent integration of apical and subendothelial chemokines in T-cell transmigration: implications for locomotion and the multistep paradigm.
    Schreiber TH; Shinder V; Cain DW; Alon R; Sackstein R
    Blood; 2007 Feb; 109(4):1381-6. PubMed ID: 17038526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ephrin stimulation modulates T cell chemotaxis.
    Sharfe N; Freywald A; Toro A; Dadi H; Roifman C
    Eur J Immunol; 2002 Dec; 32(12):3745-55. PubMed ID: 12516569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CC chemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein-3 beta are potent chemoattractants for in vitro- and in vivo-derived dendritic cells.
    Kellermann SA; Hudak S; Oldham ER; Liu YJ; McEvoy LM
    J Immunol; 1999 Apr; 162(7):3859-64. PubMed ID: 10201903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies.
    Haessler U; Kalinin Y; Swartz MA; Wu M
    Biomed Microdevices; 2009 Aug; 11(4):827-35. PubMed ID: 19343497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic devices for neutrophil chemotaxis studies.
    Zhao W; Zhao H; Li M; Huang C
    J Transl Med; 2020 Apr; 18(1):168. PubMed ID: 32293474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of chemotaxis assays from static models to physiologically relevant platforms.
    Toetsch S; Olwell P; Prina-Mello A; Volkov Y
    Integr Biol (Camb); 2009 Feb; 1(2):170-81. PubMed ID: 20023801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cutting edge: developmental switches in chemokine responses during T cell maturation.
    Campbell JJ; Pan J; Butcher EC
    J Immunol; 1999 Sep; 163(5):2353-7. PubMed ID: 10452965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Flow-free Gradient Generator Using a Self-Adhesive Thiol-acrylate Microfluidic Resin/Hydrogel (TAMR/H) Hybrid System.
    Khan AH; Smith NM; Tullier MP; Roberts BS; Englert D; Pojman JA; Melvin AT
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):26735-26747. PubMed ID: 34081856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic device for measuring cell migration towards substrate-bound and soluble chemokine gradients.
    Schwarz J; Bierbaum V; Merrin J; Frank T; Hauschild R; Bollenbach T; Tay S; Sixt M; Mehling M
    Sci Rep; 2016 Nov; 6():36440. PubMed ID: 27819270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic multi-injector for gradient generation.
    Chung BG; Lin F; Jeon NL
    Lab Chip; 2006 Jun; 6(6):764-8. PubMed ID: 16738728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.