BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 17066174)

  • 1. Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory.
    Vegge T
    Phys Chem Chem Phys; 2006 Nov; 8(42):4853-61. PubMed ID: 17066174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor.
    Stavila V; Bhakta RK; Alam TM; Majzoub EH; Allendorf MD
    ACS Nano; 2012 Nov; 6(11):9807-17. PubMed ID: 23075161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles study of hydrogen vacancies in sodium alanate with Ti substitution.
    Wang H; Tezuka A; Ogawa H; Ikeshoji T
    J Phys Condens Matter; 2010 May; 22(20):205503. PubMed ID: 21393708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen dynamics in Na3AlH6: a combined density functional theory and quasielastic neutron scattering study.
    Voss J; Shi Q; Jacobsen HS; Zamponi M; Lefmann K; Vegge T
    J Phys Chem B; 2007 Apr; 111(15):3886-92. PubMed ID: 17388555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of particle size on hydrogen release from sodium alanate nanoparticles.
    Mueller T; Ceder G
    ACS Nano; 2010 Oct; 4(10):5647-56. PubMed ID: 20849095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unprecedented flexibility of the >Ti=Si< group for the addition of H2.
    Maj L; Grochala W
    Phys Chem Chem Phys; 2007 Jun; 9(21):2706-12. PubMed ID: 17627314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-deuterium exchange experiments to probe the decomposition reaction of sodium alanate.
    Borgschulte A; Züttel A; Hug P; Barkhordarian G; Eigen N; Dornheim M; Bormann R; Ramirez-Cuesta AJ
    Phys Chem Chem Phys; 2008 Jul; 10(27):4045-55. PubMed ID: 18597019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A first-principles analysis of hydrogen interaction in Ti-doped NaAlH4 surfaces: structure and energetics.
    Liu J; Ge Q
    J Phys Chem B; 2006 Dec; 110(51):25863-8. PubMed ID: 17181233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational studies on hydrogen storage in aluminum nitride nanowires/tubes.
    Li Y; Zhou Z; Shen P; Zhang SB; Chen Z
    Nanotechnology; 2009 May; 20(21):215701. PubMed ID: 19423940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen dissociation and diffusion on Ni- and Ti-doped Mg(0001) surfaces.
    Pozzo M; Alfè D; Amieiro A; French S; Pratt A
    J Chem Phys; 2008 Mar; 128(9):094703. PubMed ID: 18331106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kinetic enhancement of hydrogen cycling in NaAlH(4) by melt infusion into nanoporous carbon aerogel.
    Stephens RD; Gross AF; Van Atta SL; Vajo JJ; Pinkerton FE
    Nanotechnology; 2009 May; 20(20):204018. PubMed ID: 19420666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An x-ray photoemission electron microscopy study of the formation of Ti-Al phases in 4 mol% TiCl3 catalyzed NaAlH4 during high energy ball milling.
    Dobbins T; Abrecht M; Uprety Y; Moore K
    Nanotechnology; 2009 May; 20(20):204014. PubMed ID: 19420662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the role of Ti in reversible hydrogen storage as sodium alanate: a combined experimental and density functional theoretical approach.
    Chaudhuri S; Graetz J; Ignatov A; Reilly JJ; Muckerman JT
    J Am Chem Soc; 2006 Sep; 128(35):11404-15. PubMed ID: 16939263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of H2 dissociation on the 1/2 ML c(2 × 2)-Ti/Al(100) surface.
    Chen JC; Ramos M; Arasa C; Juanes-Marcos JC; Somers MF; Martínez AE; Díaz C; Olsen RA; Kroes GJ
    Phys Chem Chem Phys; 2012 Mar; 14(9):3234-47. PubMed ID: 22294155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved hydrogen storage kinetics of nanoconfined NaAlH₄ catalyzed with TiCl₃ nanoparticles.
    Nielsen TK; Polanski M; Zasada D; Javadian P; Besenbacher F; Bystrzycki J; Skibsted J; Jensen TR
    ACS Nano; 2011 May; 5(5):4056-64. PubMed ID: 21446760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Destabilisation of complex hydrides through size effects.
    Christian M; Aguey-Zinsou KF
    Nanoscale; 2010 Dec; 2(12):2587-90. PubMed ID: 20886168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure and surface energy of NaAlH4: a comparison of DFT methodologies.
    Frankcombe TJ; Løvvik OM
    J Phys Chem B; 2006 Jan; 110(1):622-30. PubMed ID: 16471575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen storage and cycling properties of a vanadium decorated Mg nanoblade array on a Ti coated Si substrate.
    He Y; Zhao Y
    Nanotechnology; 2009 May; 20(20):204008. PubMed ID: 19420656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafine Nanocrystalline CeO2@C-Containing NaAlH4 with Fast Kinetics and Good Reversibility for Hydrogen Storage.
    Zhang X; Liu Y; Wang K; Li Y; Gao M; Pan H
    ChemSusChem; 2015 Dec; 8(24):4180-8. PubMed ID: 26632764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.