These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 17066190)
1. Analysis of bacterial strains with pyrolysis-gas chromatography/differential mobility spectrometry. Prasad S; Schmidt H; Lampen P; Wang M; Güth R; Rao JV; Smith GB; Eiceman GA Analyst; 2006 Nov; 131(11):1216-25. PubMed ID: 17066190 [TBL] [Abstract][Full Text] [Related]
2. Microfabricated differential mobility spectrometry with pyrolysis gas chromatography for chemical characterization of bacteria. Schmidt H; Tadjimukhamedov F; Mohrenz IV; Smith GB; Eiceman GA Anal Chem; 2004 Sep; 76(17):5208-17. PubMed ID: 15373463 [TBL] [Abstract][Full Text] [Related]
3. Constituents with independence from growth temperature for bacteria using pyrolysis-gas chromatography/differential mobility spectrometry with analysis of variance and principal component analysis. Prasad S; Pierce KM; Schmidt H; Rao JV; Güth R; Synovec RE; Smith GB; Eiceman GA Analyst; 2008 Jun; 133(6):760-7. PubMed ID: 18493677 [TBL] [Abstract][Full Text] [Related]
4. Correlation of mass spectrometry identified bacterial biomarkers from a fielded pyrolysis-gas chromatography-ion mobility spectrometry biodetector with the microbiological gram stain classification scheme. Snyder AP; Dworzanski JP; Tripathi A; Maswadeh WM; Wick CH Anal Chem; 2004 Nov; 76(21):6492-9. PubMed ID: 15516146 [TBL] [Abstract][Full Text] [Related]
5. Analysis of bacteria by pyrolysis gas chromatography-differential mobility spectrometry and isolation of chemical components with a dependence on growth temperature. Prasad S; Pierce KM; Schmidt H; Rao JV; Güth R; Bader S; Synovec RE; Smith GB; Eiceman GA Analyst; 2007 Oct; 132(10):1031-9. PubMed ID: 17893807 [TBL] [Abstract][Full Text] [Related]
6. Discrimination of bacteria using pyrolysis-gas chromatography-differential mobility spectrometry (Py-GC-DMS) and chemometrics. Cheung W; Xu Y; Thomas CL; Goodacre R Analyst; 2009 Mar; 134(3):557-63. PubMed ID: 19238294 [TBL] [Abstract][Full Text] [Related]
7. Ion mobility spectrometry detection for gas chromatography. Kanu AB; Hill HH J Chromatogr A; 2008 Jan; 1177(1):12-27. PubMed ID: 18067900 [TBL] [Abstract][Full Text] [Related]
8. Differential mobility spectrometry of chlorocarbons with a micro-fabricated drift tube. Eiceman GA; Krylov EV; Tadjikov B; Ewing RG; Nazarov EG; Miller RA Analyst; 2004 Apr; 129(4):297-304. PubMed ID: 15042159 [TBL] [Abstract][Full Text] [Related]
9. Concept for facilitating analyst-mediated interpretation of qualitative chromatographic-mass spectral data: an alternative to manual examination of extracted ion chromatograms. Borges CR Anal Chem; 2007 Jul; 79(13):4805-13. PubMed ID: 17542552 [TBL] [Abstract][Full Text] [Related]
10. Analysis of Titan tholin pyrolysis products by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. McGuigan M; Waite JH; Imanaka H; Sacks RD J Chromatogr A; 2006 Nov; 1132(1-2):280-8. PubMed ID: 16934276 [TBL] [Abstract][Full Text] [Related]
11. Two-dimensional wavelet analysis based classification of gas chromatogram differential mobility spectrometry signals. Zhao W; Sankaran S; Ibáñez AM; Dandekar AM; Davis CE Anal Chim Acta; 2009 Aug; 647(1):46-53. PubMed ID: 19576384 [TBL] [Abstract][Full Text] [Related]
12. Limits of separation of a multi-capillary column with mixtures of volatile organic compounds for a flame ionization detector and a differential mobility detector. Eiceman GA; Feng Y J Chromatogr A; 2009 Feb; 1216(6):985-93. PubMed ID: 19118835 [TBL] [Abstract][Full Text] [Related]
13. One-dimensional and comprehensive two-dimensional gas chromatography coupled to soft photo ionization time-of-flight mass spectrometry: a two- and three-dimensional separation approach. Welthagen W; Mitschke S; Mühlberger F; Zimmermann R J Chromatogr A; 2007 May; 1150(1-2):54-61. PubMed ID: 17418851 [TBL] [Abstract][Full Text] [Related]
14. Integrative normalization and comparative analysis for metabolic fingerprinting by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Almstetter MF; Appel IJ; Gruber MA; Lottaz C; Timischl B; Spang R; Dettmer K; Oefner PJ Anal Chem; 2009 Jul; 81(14):5731-9. PubMed ID: 19522528 [TBL] [Abstract][Full Text] [Related]
15. Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-of-flight mass spectrometry. Marsman JH; Wildschut J; Evers P; de Koning S; Heeres HJ J Chromatogr A; 2008 Apr; 1188(1):17-25. PubMed ID: 18302963 [TBL] [Abstract][Full Text] [Related]
16. Separation of ions from explosives in differential mobility spectrometry by vapor-modified drift gas. Eiceman GA; Krylov EV; Krylova NS; Nazarov EG; Miller RA Anal Chem; 2004 Sep; 76(17):4937-44. PubMed ID: 15373426 [TBL] [Abstract][Full Text] [Related]
17. Chemical fingerprinting of petroleum biomarkers in biota samples using retention-time locking chromatography and multivariate analysis. Bartolomé L; Deusto M; Etxebarria N; Navarro P; Usobiaga A; Zuloaga O J Chromatogr A; 2007 Jul; 1157(1-2):369-75. PubMed ID: 17544434 [TBL] [Abstract][Full Text] [Related]
19. Comparative urine analysis by liquid chromatography-mass spectrometry and multivariate statistics: method development, evaluation, and application to proteinuria. Kemperman RF; Horvatovich PL; Hoekman B; Reijmers TH; Muskiet FA; Bischoff R J Proteome Res; 2007 Jan; 6(1):194-206. PubMed ID: 17203964 [TBL] [Abstract][Full Text] [Related]
20. The use of GC×GC/TOF MS with multivariate analysis for the characterization of foodborne pathogen bacteria profiles. Gardner JY; Brillhart DE; Benjamin MM; Dixon LG; Mitchell LM; Dimandja JM J Sep Sci; 2011 Jan; 34(2):176-85. PubMed ID: 21246723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]