These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 17066333)

  • 1. Biodegradation of sodium lauryl ether sulfate (SLES) by two different bacterial consortia.
    Khleifat KM
    Curr Microbiol; 2006 Nov; 53(5):444-8. PubMed ID: 17066333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria.
    Paulo AMS; Aydin R; Dimitrov MR; Vreeling H; Cavaleiro AJ; García-Encina PA; Stams AJM; Plugge CM
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5163-5173. PubMed ID: 28299401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of biodegradation of the anionic surfactant sodium lauryl ether sulphate used in two foaming agents for mechanized tunnelling excavation.
    Barra Caracciolo A; Ademollo N; Cardoni M; Di Giulio A; Grenni P; Pescatore T; Rauseo J; Patrolecco L
    J Hazard Mater; 2019 Mar; 365():538-545. PubMed ID: 30469033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of anionic surfactant, sodium dodecyl sulphate by Pseudomonas aeruginosa MTCC 10311.
    Ambily PS; Jisha MS
    J Environ Biol; 2012 Jul; 33(4):717-20. PubMed ID: 23359997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics and environmental fate of the anionic surfactant sodium lauryl ether sulphate (SLES) used as the main component in foaming agents for mechanized tunnelling.
    Barra Caracciolo A; Cardoni M; Pescatore T; Patrolecco L
    Environ Pollut; 2017 Jul; 226():94-103. PubMed ID: 28411499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of an SDS-degrading Klebsiella oxytoca.
    Shukor MY; Husin WS; Rahman MF; Shamaan NA; Syed MA
    J Environ Biol; 2009 Jan; 30(1):129-34. PubMed ID: 20112874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of anionic surfactants by Alcaligenes faecalis, Enterobacter cloacae and Serratia marcescens strains isolated from industrial wastewater.
    Fedeila M; Hachaïchi-Sadouk Z; Bautista LF; Simarro R; Nateche F
    Ecotoxicol Environ Saf; 2018 Nov; 163():629-635. PubMed ID: 30096664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmid-mediated biodegradation of the anionic surfactant sodium dodecyl sulphate, by Pseudomonas aeruginosa S7.
    Yeldho D; Rebello S; Jisha MS
    Bull Environ Contam Toxicol; 2011 Jan; 86(1):110-3. PubMed ID: 21152890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradability of bacterial surfactants.
    Lima TM; Procópio LC; Brandão FD; Carvalho AM; Tótola MR; Borges AC
    Biodegradation; 2011 Jun; 22(3):585-92. PubMed ID: 21053055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and Rhamnolipid, in liquid culture media and compost matrix.
    Zeng G; Fu H; Zhong H; Yuan X; Fu M; Wang W; Huang G
    Biodegradation; 2007 Jun; 18(3):303-10. PubMed ID: 17106758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergic degradation of phenanthrene by consortia of newly isolated bacterial strains.
    Kim YM; Ahn CK; Woo SH; Jung GY; Park JM
    J Biotechnol; 2009 Dec; 144(4):293-8. PubMed ID: 19818817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth enhancement of ETBE-degrading bacterial consortium with various carbon sources.
    Bekri M; Pauss A
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):141-5. PubMed ID: 15296148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth inhibition and stimulation of Shewanella oneidensis MR-1 by surfactants and calcium polysulfide.
    Bailey KL; Tilton F; Jansik DP; Ergas SJ; Marshall MJ; Miracle AL; Wellman DM
    Ecotoxicol Environ Saf; 2012 Jun; 80():195-202. PubMed ID: 22444725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Higher alkyl sulfatase activity required by microbial inhabitants to remove anionic surfactants in the contaminated surface waters.
    Icgen B; Salik SB; Goksu L; Ulusoy H; Yilmaz F
    Water Sci Technol; 2017 Nov; 76(9-10):2357-2366. PubMed ID: 29144294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation kinetics of surfactants in seawater.
    Quiroga JM; Perales JA; Romero LI; Sales D
    Chemosphere; 1999 Nov; 39(11):1957-69. PubMed ID: 10533720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of a Pseudomonas putida strain able to grow with trimethyl-1,2-dihydroxy-propyl-ammonium as sole source of carbon, energy and nitrogen.
    Kaech A; Egli T
    Syst Appl Microbiol; 2001 Jul; 24(2):252-61. PubMed ID: 11518329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Degradation of a commercial surface-active agent, in the presence of a complementary source of carbon, by a selected bacterial colony in a marine environment].
    Sigoillot JC; Nguyen MH
    Can J Microbiol; 1987 Oct; 33(10):929-32. PubMed ID: 3690420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal factors affecting surfactant biodegradation in Antarctic coastal waters: comparison of a polluted and pristine site.
    George AL
    Mar Environ Res; 2002 May; 53(4):403-15. PubMed ID: 11991210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexavalent molybdenum reduction to mo-blue by a sodium-dodecyl-sulfate-degrading Klebsiella oxytoca strain DRY14.
    Halmi MI; Zuhainis SW; Yusof MT; Shaharuddin NA; Helmi W; Shukor Y; Syed MA; Ahmad SA
    Biomed Res Int; 2013; 2013():384541. PubMed ID: 24383052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological surface-active compounds from marine bacteria.
    Dang NP; Landfald B; Willassen NP
    Environ Technol; 2016; 37(9):1151-8. PubMed ID: 26506920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.