These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 1706675)

  • 1. Effects of ruthenium red on excitation and contraction in muscle fibres with Ca2+ electrogenesis.
    Zacharová D; Uhrík B; Hencek M; Lipskaja E; Pavelková J
    Gen Physiol Biophys; 1990 Dec; 9(6):545-68. PubMed ID: 1706675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation by adrenaline of electrophysiological membrane parameters and contractility in intact and internally perfused single muscle fibres of the crayfish.
    Zacharová D; Lipská E; Hencek M; Hochmannová J; Sajter V
    Gen Physiol Biophys; 1993 Dec; 12(6):543-77. PubMed ID: 8070646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of Pb2+ ions on calcium currents and contractility in single muscle fibres of the crayfish.
    Zacharová D; Hencek M; Pavelková J; Lipská E
    Gen Physiol Biophys; 1993 Apr; 12(2):183-98. PubMed ID: 8405921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium release in skinned muscle fibres of the toad by transverse tubule depolarization or by direct stimulation.
    Lamb GD; Stephenson DG
    J Physiol; 1990 Apr; 423():495-517. PubMed ID: 1696987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Excitation-contraction coupling in isolated muscle fibers with calcium electrogenesis preserved in a culture medium].
    Zacharová D; Rýdlová K; Lipskaja E; Uhrík B; Hencek M
    Bratisl Lek Listy; 1990 Mar; 91(3):185-96. PubMed ID: 2340417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ruthenium red on excitation-contraction coupling in frog skeletal muscle.
    Suzuki T; Obara K; Nagai T
    Jpn J Physiol; 1980; 30(1):49-59. PubMed ID: 6155498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Fiber-type morphology and function of the triads in frog (Rana esculenta) skeletal muscle)].
    Dauber W
    Z Mikrosk Anat Forsch; 1979; 93(3):512-36. PubMed ID: 316237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of excitation-contraction coupling in skinned muscle fibers.
    Donaldson SK
    Med Sci Sports Exerc; 1989 Aug; 21(4):411-7. PubMed ID: 2674592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.
    Trinh HH; Lamb GD
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):591-600. PubMed ID: 16789925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of ultrastructural changes accompanying caffeine contractures in isolated muscle fibres of the crayfish.
    Uhrík B; Zacharová D
    Pflugers Arch; 1976 Jul; 364(2):183-90. PubMed ID: 986627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium red: differential effects on excitation and excitation-contraction coupling in frog skeletal muscle.
    Snowdowne KW; Howell JN
    J Muscle Res Cell Motil; 1984 Aug; 5(4):399-410. PubMed ID: 6207202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ruthenium red effect on mechanical and electrical properties of mammalian skeletal muscle.
    Delbono O; Kotsias BA
    Life Sci; 1989; 45(18):1699-708. PubMed ID: 2479803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of effects of SKF 525-A and procaine on excitation-contraction coupling in single crayfish muscle fibers.
    Suarez-Kurtz G
    J Pharmacol Exp Ther; 1976 Sep; 198(3):687-94. PubMed ID: 978469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of intracellular free calcium and tension on membrane potential and intracellular pH in single crayfish muscle fibres.
    Kaila K; Voipio J
    Pflugers Arch; 1990 Jul; 416(5):501-11. PubMed ID: 2235293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical properties of phasic and tonic muscle fibres of the abdominal flexor muscles in crayfish.
    Lehouelleur J
    J Physiol (Paris); 1978; 74(8):675-86. PubMed ID: 753922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of quinine on tension development, membrane potentials and excitation-contraction coupling of crab skeletal muscle fibres.
    Huddart H
    J Physiol; 1971 Aug; 216(3):641-57. PubMed ID: 5565642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sites of action of D2O in intact and skinned crayfish muscle fibers.
    Eastwood AB; Grundfest H; Brandt PW; Reuben JP
    J Membr Biol; 1975 Dec; 24(3-4):249-63. PubMed ID: 814241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Functional features of the locomotor muscles of the locust].
    Mandel'shtam IuE; Nasledov GA
    Neirofiziologiia; 1977; 9(5):532-8. PubMed ID: 927600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Ionic nature of repeated responses of myocardial fibers].
    Sakson ME; Kukushin NI; Tsintsadze MA
    Biofizika; 1976; 21(4):703-8. PubMed ID: 1009156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.