BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 17067391)

  • 1. P5L mutation in Ank results in an increase in extracellular inorganic pyrophosphate during proliferation and nonmineralizing hypertrophy in stably transduced ATDC5 cells.
    Zaka R; Stokes D; Dion AS; Kusnierz A; Han F; Williams CJ
    Arthritis Res Ther; 2006; 8(6):R164. PubMed ID: 17067391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the progressive ankylosis gene in cartilage mineralization.
    Zaka R; Williams CJ
    Curr Opin Rheumatol; 2006 Mar; 18(2):181-6. PubMed ID: 16462526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease.
    Hirose J; Ryan LM; Masuda I
    Arthritis Rheum; 2002 Dec; 46(12):3218-29. PubMed ID: 12483726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the progressive ankylosis gene (ank) in cartilage mineralization.
    Wang W; Xu J; Du B; Kirsch T
    Mol Cell Biol; 2005 Jan; 25(1):312-23. PubMed ID: 15601852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upregulation of ANK protein expression in joint tissue in calcium pyrophosphate dihydrate crystal deposition disease.
    Uzuki M; Sawai T; Ryan LM; Rosenthal AK; Masuda I
    J Rheumatol; 2014 Jan; 41(1):65-74. PubMed ID: 24293574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CPPDD-associated ANKH M48T mutation interrupts the interaction of ANKH with the sodium/phosphate cotransporter PiT-1.
    Wang J; Tsui HW; Beier F; Tsui FW
    J Rheumatol; 2009 Jun; 36(6):1265-72. PubMed ID: 19369455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Familial calcium pyrophosphate dihydrate deposition disease and the ANKH gene.
    Williams CJ
    Curr Opin Rheumatol; 2003 May; 15(3):326-31. PubMed ID: 12707589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders.
    Harmey D; Hessle L; Narisawa S; Johnson KA; Terkeltaub R; Millán JL
    Am J Pathol; 2004 Apr; 164(4):1199-209. PubMed ID: 15039209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of sporadic chondrocalcinosis with a -4-basepair G-to-A transition in the 5'-untranslated region of ANKH that promotes enhanced expression of ANKH protein and excess generation of extracellular inorganic pyrophosphate.
    Zhang Y; Johnson K; Russell RG; Wordsworth BP; Carr AJ; Terkeltaub RA; Brown MA
    Arthritis Rheum; 2005 Apr; 52(4):1110-7. PubMed ID: 15818664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linked deficiencies in extracellular PP(i) and osteopontin mediate pathologic calcification associated with defective PC-1 and ANK expression.
    Johnson K; Goding J; Van Etten D; Sali A; Hu SI; Farley D; Krug H; Hessle L; Millán JL; Terkeltaub R
    J Bone Miner Res; 2003 Jun; 18(6):994-1004. PubMed ID: 12817751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in intracellular localisation of ANKH mutants that relate to mechanisms of calcium pyrophosphate deposition disease and craniometaphyseal dysplasia.
    Vijen S; Hawes C; Runions J; Russell RGG; Wordsworth BP; Carr AJ; Pink RC; Zhang Y
    Sci Rep; 2020 May; 10(1):7408. PubMed ID: 32366894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic pyrophosphate generation by transforming growth factor-beta-1 is mainly dependent on ANK induction by Ras/Raf-1/extracellular signal-regulated kinase pathways in chondrocytes.
    Cailotto F; Bianchi A; Sebillaud S; Venkatesan N; Moulin D; Jouzeau JY; Netter P
    Arthritis Res Ther; 2007; 9(6):R122. PubMed ID: 18034874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of pyrophosphate/phosphate homeostasis in terminal differentiation and apoptosis of growth plate chondrocytes.
    Kim HJ; Delaney JD; Kirsch T
    Bone; 2010 Sep; 47(3):657-65. PubMed ID: 20601283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcytosis in ank/ank mice and the role of ANKH in promoting erythroid differentiation.
    Wang J; Wang C; Tsui HW; Las Heras F; Cheng EY; Iscove NN; Chiu B; Inman RD; Pritzker KP; Tsui FW
    Exp Cell Res; 2007 Dec; 313(20):4120-9. PubMed ID: 17950726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ank gene story.
    Ryan LM
    Arthritis Res; 2001; 3(2):77-9. PubMed ID: 11178113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progressive ankylosis protein (ANK) in osteoblasts and osteoclasts controls bone formation and bone remodeling.
    Kim HJ; Minashima T; McCarthy EF; Winkles JA; Kirsch T
    J Bone Miner Res; 2010 Aug; 25(8):1771-83. PubMed ID: 20200976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upregulated ank expression in osteoarthritis can promote both chondrocyte MMP-13 expression and calcification via chondrocyte extracellular PPi excess.
    Johnson K; Terkeltaub R
    Osteoarthritis Cartilage; 2004 Apr; 12(4):321-35. PubMed ID: 15023384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and genetic analysis of ANK in arthritis and bone disease.
    Gurley KA; Reimer RJ; Kingsley DM
    Am J Hum Genet; 2006 Dec; 79(6):1017-29. PubMed ID: 17186460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen tension regulates the expression of ANK (progressive ankylosis) in an HIF-1-dependent manner in growth plate chondrocytes.
    Zaka R; Dion AS; Kusnierz A; Bohensky J; Srinivas V; Freeman T; Williams CJ
    J Bone Miner Res; 2009 Nov; 24(11):1869-78. PubMed ID: 19419319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of ANK in Calcium Pyrophosphate Deposition Disease.
    Mitton-Fitzgerald E; Gohr CM; Bettendorf B; Rosenthal AK
    Curr Rheumatol Rep; 2016 May; 18(5):25. PubMed ID: 27032788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.