These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 17067413)

  • 1. Generalized linear models with ordinally-observed covariates.
    Johnson TR
    Br J Math Stat Psychol; 2006 Nov; 59(Pt 2):275-300. PubMed ID: 17067413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated failure time models with covariates subject to measurement error.
    He W; Yi GY; Xiong J
    Stat Med; 2007 Nov; 26(26):4817-32. PubMed ID: 17436310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully parametric and semi-parametric regression models for common events with covariate measurement error in main study/validation study designs.
    Spiegelman D; Casella M
    Biometrics; 1997 Jun; 53(2):395-409. PubMed ID: 9192443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of variance-function misspecification in analysis of longitudinal data.
    Wang YG; Lin X
    Biometrics; 2005 Jun; 61(2):413-21. PubMed ID: 16011687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian adjustment for covariate measurement errors: a flexible parametric approach.
    Hossain S; Gustafson P
    Stat Med; 2009 May; 28(11):1580-600. PubMed ID: 19226564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables.
    Smithson M; Verkuilen J
    Psychol Methods; 2006 Mar; 11(1):54-71. PubMed ID: 16594767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating and testing interactions in linear regression models when explanatory variables are subject to classical measurement error.
    Murad H; Freedman LS
    Stat Med; 2007 Oct; 26(23):4293-310. PubMed ID: 17340676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A detailed evaluation of adjustment methods for multiplicative measurement error in linear regression with applications in occupational epidemiology.
    Lyles RH; Kupper LL
    Biometrics; 1997 Sep; 53(3):1008-25. PubMed ID: 9290228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized additive modeling with implicit variable selection by likelihood-based boosting.
    Tutz G; Binder H
    Biometrics; 2006 Dec; 62(4):961-71. PubMed ID: 17156269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A measurement error model with a Poisson distributed surrogate.
    Li L; Palta M; Shao J
    Stat Med; 2004 Aug; 23(16):2527-36. PubMed ID: 15287082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A flexible count data regression model for risk analysis.
    Guikema SD; Coffelt JP
    Risk Anal; 2008 Feb; 28(1):213-23. PubMed ID: 18304118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating sensitivity and bias in a yes/no task.
    Hautus MJ; Lee A
    Br J Math Stat Psychol; 2006 Nov; 59(Pt 2):257-73. PubMed ID: 17067412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating predictive values for blood pressure measurements from multivariate regression models with covariates.
    Cook NR
    Stat Med; 1996 Oct; 15(19):2013-28. PubMed ID: 8896136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general method for dealing with misclassification in regression: the misclassification SIMEX.
    Küchenhoff H; Mwalili SM; Lesaffre E
    Biometrics; 2006 Mar; 62(1):85-96. PubMed ID: 16542233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable selection for marginal longitudinal generalized linear models.
    Cantoni E; Flemming JM; Ronchetti E
    Biometrics; 2005 Jun; 61(2):507-14. PubMed ID: 16011698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural inference in transition measurement error models for longitudinal data.
    Pan W; Lin X; Zeng D
    Biometrics; 2006 Jun; 62(2):402-12. PubMed ID: 16918904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs.
    Fitzmaurice GM; Laird NM; Shneyer L
    Stat Med; 2001 Apr; 20(7):1009-21. PubMed ID: 11276032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear mixed effects models for repeated measures data.
    Lindstrom ML; Bates DM
    Biometrics; 1990 Sep; 46(3):673-87. PubMed ID: 2242409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Missing covariates in longitudinal data with informative dropouts: bias analysis and inference.
    Roy J; Lin X
    Biometrics; 2005 Sep; 61(3):837-46. PubMed ID: 16135036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Error in timing in regression with observed longitudinal measurements.
    Wang CY; Huang Y
    Stat Med; 2003 Aug; 22(16):2577-90. PubMed ID: 12898545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.