BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 17067962)

  • 1. A simple fluorescent biosensor for theophylline based on its RNA aptamer.
    Rankin CJ; Fuller EN; Hamor KH; Gabarra SA; Shields TP
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(12):1407-24. PubMed ID: 17067962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum.
    Ferapontova EE; Olsen EM; Gothelf KV
    J Am Chem Soc; 2008 Apr; 130(13):4256-8. PubMed ID: 18324816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomolecular sensor based on fluorescence-labeled aptamer.
    Ozaki H; Nishihira A; Wakabayashi M; Kuwahara M; Sawai H
    Bioorg Med Chem Lett; 2006 Aug; 16(16):4381-4. PubMed ID: 16757168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2-Aminopurine-modified abasic-site-containing duplex DNA for highly selective detection of theophylline.
    Li M; Sato Y; Nishizawa S; Seino T; Nakamura K; Teramae N
    J Am Chem Soc; 2009 Feb; 131(7):2448-9. PubMed ID: 19191489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theophylline detection in serum using a self-assembling RNA aptamer-based gold nanoparticle sensor.
    Jiang H; Ling K; Tao X; Zhang Q
    Biosens Bioelectron; 2015 Aug; 70():299-303. PubMed ID: 25840014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific incorporation of fluorescent probes into RNA by specific transcription using unnatural base pairs.
    Kimoto M; Kawai R; Mitsui T; Harada Y; Sato A; Yokoyama S; Hirao I
    Nucleic Acids Symp Ser (Oxf); 2005; (49):287-8. PubMed ID: 17150746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quality control certification of RNA aptamer-based detection.
    Lau PS; Lai CK; Li Y
    Chembiochem; 2013 May; 14(8):987-92. PubMed ID: 23592300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An aptamer-based fluorescent biosensor for potassium ion detection using a pyrene-labeled molecular beacon.
    Shi C; Gu H; Ma C
    Anal Biochem; 2010 May; 400(1):99-102. PubMed ID: 20056100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive assay for theophylline based on an abasic site-containing DNA duplex aptamer and a fluorescent ligand.
    Sato Y; Zhang Y; Nishizawa S; Seino T; Nakamura K; Li M; Teramae N
    Chemistry; 2012 Oct; 18(40):12719-24. PubMed ID: 22915350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of serum on an RNA aptamer-based electrochemical sensor for theophylline.
    Ferapontova EE; Gothelf KV
    Langmuir; 2009 Apr; 25(8):4279-83. PubMed ID: 19301828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence generation from tandem repeats of a malachite green RNA aptamer using rolling circle transcription.
    Furukawa K; Abe H; Abe N; Harada M; Tsuneda S; Ito Y
    Bioorg Med Chem Lett; 2008 Aug; 18(16):4562-5. PubMed ID: 18667307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-up Hoechst-DNA aptamer pair: generation of an aptamer-selective fluorophore from a conventional DNA-staining dye.
    Sando S; Narita A; Aoyama Y
    Chembiochem; 2007 Oct; 8(15):1795-803. PubMed ID: 17806095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A ribonucleopeptide module for effective conversion of an RNA aptamer to a fluorescent sensor.
    Liew FF; Hayashi H; Nakano S; Nakata E; Morii T
    Bioorg Med Chem; 2011 Oct; 19(19):5771-5. PubMed ID: 21906952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel fluorescence enhancement IgE assay using a DNA aptamer.
    He JL; Wu ZS; Zhang SB; Shen GL; Yu RQ
    Analyst; 2009 May; 134(5):1003-7. PubMed ID: 19381397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quenching of fluorophore-labeled DNA oligonucleotides by divalent metal ions: implications for selection, design, and applications of signaling aptamers and signaling deoxyribozymes.
    Rupcich N; Chiuman W; Nutiu R; Mei S; Flora KK; Li Y; Brennan JD
    J Am Chem Soc; 2006 Jan; 128(3):780-90. PubMed ID: 16417367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A DNA Aptamer for Theophylline with Ultrahigh Selectivity Reminiscent of the Classic RNA Aptamer.
    Huang PJ; Liu J
    ACS Chem Biol; 2022 Aug; 17(8):2121-2129. PubMed ID: 35943093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free aptamer-based sensors for L-argininamide by using nucleic acid minor groove binding dyes.
    Zhu Z; Yang C; Zhou X; Qin J
    Chem Commun (Camb); 2011 Mar; 47(11):3192-4. PubMed ID: 21270994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 5'-bis-pyrenylated oligonucleotides display enhanced excimer fluorescence upon hybridization with DNA and RNA.
    Kostenko E; Dobrikov M; Komarova N; Pyshniy D; Vlassov V; Zenkova M
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(10-11):1859-70. PubMed ID: 11719999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A self-assembling RNA aptamer-based graphene oxide sensor for the turn-on detection of theophylline in serum.
    Ling K; Jiang H; Li Y; Tao X; Qiu C; Li FR
    Biosens Bioelectron; 2016 Dec; 86():8-13. PubMed ID: 27318104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theophylline detection using an aptamer and DNA-gold nanoparticle conjugates.
    Chávez JL; Lyon W; Kelley-Loughnane N; Stone MO
    Biosens Bioelectron; 2010 Sep; 26(1):23-8. PubMed ID: 20605714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.