These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 17068099)

  • 21. Probing the regulation of M (Kv7) potassium channels in intact neurons with membrane-targeted peptides.
    Robbins J; Marsh SJ; Brown DA
    J Neurosci; 2006 Jul; 26(30):7950-61. PubMed ID: 16870740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular mechanisms underlying membrane-potential-mediated regulation of neuronal K2P2.1 channels.
    Segal-Hayoun Y; Cohen A; Zilberberg N
    Mol Cell Neurosci; 2010 Jan; 43(1):117-26. PubMed ID: 19837167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TREK-2 (K2P10.1) and TRESK (K2P18.1) are major background K+ channels in dorsal root ganglion neurons.
    Kang D; Kim D
    Am J Physiol Cell Physiol; 2006 Jul; 291(1):C138-46. PubMed ID: 16495368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gating properties of GIRK channels activated by Galpha(o)- and Galpha(i)-coupled muscarinic m2 receptors in Xenopus oocytes: the role of receptor precoupling in RGS modulation.
    Zhang Q; Pacheco MA; Doupnik CA
    J Physiol; 2002 Dec; 545(2):355-73. PubMed ID: 12456817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of KCNQ2/KCNQ3 current by G protein cycling: the kinetics of receptor-mediated signaling by Gq.
    Suh BC; Horowitz LF; Hirdes W; Mackie K; Hille B
    J Gen Physiol; 2004 Jun; 123(6):663-83. PubMed ID: 15173220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acetylcholine-dependent upregulation of TASK-1 channels in thalamic interneurons by a smooth muscle-like signalling pathway.
    Leist M; Rinné S; Datunashvili M; Aissaoui A; Pape HC; Decher N; Meuth SG; Budde T
    J Physiol; 2017 Sep; 595(17):5875-5893. PubMed ID: 28714121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TREK-1 background potassium channels.
    Murbartián J; Lei Q; Sando JJ; Bayliss DA
    J Biol Chem; 2005 Aug; 280(34):30175-84. PubMed ID: 16006563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Both TASK-3 and TREK-1 two-pore loop K channels are expressed in H295R cells and modulate their membrane potential and aldosterone secretion.
    Brenner T; O'Shaughnessy KM
    Am J Physiol Endocrinol Metab; 2008 Dec; 295(6):E1480-6. PubMed ID: 18854423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-pore potassium ion channels are inhibited by both G(q/11)- and G(i)-coupled P2Y receptors.
    Shrestha SS; Parmar M; Kennedy C; Bushell TJ
    Mol Cell Neurosci; 2010 Apr; 43(4):363-9. PubMed ID: 20097289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GTP-binding protein Gq mediates muscarinic-receptor-induced inhibition of the inwardly rectifying potassium channel IRK1 (Kir 2.1).
    Firth TA; Jones SV
    Neuropharmacology; 2001 Mar; 40(3):358-65. PubMed ID: 11166329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TRESK background potassium channel is not gated at the helix bundle crossing near the cytoplasmic end of the pore.
    Lengyel M; Czirják G; Enyedi P
    PLoS One; 2018; 13(5):e0197622. PubMed ID: 29763475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antipsychotics inhibit TREK but not TRAAK channels.
    Thümmler S; Duprat F; Lazdunski M
    Biochem Biophys Res Commun; 2007 Mar; 354(1):284-9. PubMed ID: 17222806
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiology and pharmacology of two-pore domain potassium channels.
    Kim D
    Curr Pharm Des; 2005; 11(21):2717-36. PubMed ID: 16101451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Therapeutic potential of neuronal two-pore domain potassium-channel modulators.
    Mathie A; Veale EL
    Curr Opin Investig Drugs; 2007 Jul; 8(7):555-62. PubMed ID: 17659475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Pharmacology of K
    Decher N; Rinné S; Bedoya M; Gonzalez W; Kiper AK
    Cell Physiol Biochem; 2021 Mar; 55(S3):87-107. PubMed ID: 33667333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein and Chemical Determinants of BL-1249 Action and Selectivity for K
    Pope L; Arrigoni C; Lou H; Bryant C; Gallardo-Godoy A; Renslo AR; Minor DL
    ACS Chem Neurosci; 2018 Dec; 9(12):3153-3165. PubMed ID: 30089357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The versatile regulation of K2P channels by polyanionic lipids of the phosphoinositide and fatty acid metabolism.
    Riel EB; Jürs BC; Cordeiro S; Musinszki M; Schewe M; Baukrowitz T
    J Gen Physiol; 2022 Feb; 154(2):. PubMed ID: 34928298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphatidylinositol (4,5)-bisphosphate dynamically regulates the K
    Niemeyer MI; Cid LP; Paulais M; Teulon J; Sepúlveda FV
    Sci Rep; 2017 Mar; 7():45407. PubMed ID: 28358046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Specificity of Gbetagamma signaling to Kir3 channels depends on the helical domain of pertussis toxin-sensitive Galpha subunits.
    Rusinova R; Mirshahi T; Logothetis DE
    J Biol Chem; 2007 Nov; 282(47):34019-30. PubMed ID: 17872944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. G protein-coupled receptor (GPCR) kinase 2 regulates agonist-independent Gq/11 signaling from the mouse cytomegalovirus GPCR M33.
    Sherrill JD; Miller WE
    J Biol Chem; 2006 Dec; 281(52):39796-805. PubMed ID: 17088245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.