These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Diffusion of Anisotropic Colloids in Periodic Arrays of Obstacles. Zhou F; Wang H; Zhang Z Langmuir; 2020 Oct; 36(40):11866-11872. PubMed ID: 32927949 [TBL] [Abstract][Full Text] [Related]
23. Persistence of an active asymmetric rigid Brownian particle in two dimensions. Ghosh A; Mandal S; Chakraborty D J Chem Phys; 2022 Nov; 157(19):194905. PubMed ID: 36414451 [TBL] [Abstract][Full Text] [Related]
24. Diffusion in confined geometries. Burada PS; Hänggi P; Marchesoni F; Schmid G; Talkner P Chemphyschem; 2009 Jan; 10(1):45-54. PubMed ID: 19025741 [TBL] [Abstract][Full Text] [Related]
25. Long-time tails of translational and rotational Brownian motion in a suspension of hard spheres. Hermanns HG; Felderhof BU J Chem Phys; 2007 Jan; 126(4):044902. PubMed ID: 17286504 [TBL] [Abstract][Full Text] [Related]
26. Persistence in Brownian motion of an ellipsoidal particle in two dimensions. Ghosh A; Chakraborty D J Chem Phys; 2020 May; 152(17):174901. PubMed ID: 32384838 [TBL] [Abstract][Full Text] [Related]
27. Effects of water model and simulation box size on protein diffusional motions. Takemura K; Kitao A J Phys Chem B; 2007 Oct; 111(41):11870-2. PubMed ID: 17887670 [TBL] [Abstract][Full Text] [Related]
28. Smoluchowski diffusion equation for active Brownian swimmers. Sevilla FJ; Sandoval M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052150. PubMed ID: 26066162 [TBL] [Abstract][Full Text] [Related]
29. Measurement of the translational and rotational Brownian motion of individual particles in a rarefied gas. Blum J; Bruns S; Rademacher D; Voss A; Willenberg B; Krause M Phys Rev Lett; 2006 Dec; 97(23):230601. PubMed ID: 17280186 [TBL] [Abstract][Full Text] [Related]
30. Broadband boundary effects on Brownian motion. Mo J; Simha A; Raizen MG Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062106. PubMed ID: 26764631 [TBL] [Abstract][Full Text] [Related]
31. Effects of translation-rotation coupling on the displacement probability distribution functions of boomerang colloidal particles. Chakrabarty A; Wang F; Sun K; Wei QH Soft Matter; 2016 May; 12(19):4318-23. PubMed ID: 27079870 [TBL] [Abstract][Full Text] [Related]
32. Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory. Nakai H; Hoshino M; Miyamoto K; Hyodo S J Chem Phys; 2005 Apr; 122(16):164101. PubMed ID: 15945666 [TBL] [Abstract][Full Text] [Related]
33. Transient Effects of Excluded Volume Interactions on the Translational Diffusion of Hydrodynamically Anisotropic Molecules. Długosz M; Antosiewicz JM J Chem Theory Comput; 2014 Jun; 10(6):2583-90. PubMed ID: 26580778 [TBL] [Abstract][Full Text] [Related]
34. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking. Dettmer SL; Keyser UF; Pagliara S Rev Sci Instrum; 2014 Feb; 85(2):023708. PubMed ID: 24593372 [TBL] [Abstract][Full Text] [Related]
35. Protein dynamics from a NMR perspective: networks of coupled rotators and fractional Brownian dynamics. Calandrini V; Abergel D; Kneller GR J Chem Phys; 2008 Apr; 128(14):145102. PubMed ID: 18412480 [TBL] [Abstract][Full Text] [Related]
36. Brownian escape and force-driven transport through entropic barriers: Particle size effect. Cheng KL; Sheng YJ; Tsao HK J Chem Phys; 2008 Nov; 129(18):184901. PubMed ID: 19045425 [TBL] [Abstract][Full Text] [Related]
37. High-precision tracking of brownian boomerang colloidal particles confined in quasi two dimensions. Chakrabarty A; Wang F; Fan CZ; Sun K; Wei QH Langmuir; 2013 Nov; 29(47):14396-402. PubMed ID: 24171648 [TBL] [Abstract][Full Text] [Related]
38. Single particle tracking of complex diffusion in membranes: simulation and detection of barrier, raft, and interaction phenomena. Jin S; Verkman AS J Phys Chem B; 2007 Apr; 111(14):3625-32. PubMed ID: 17388520 [TBL] [Abstract][Full Text] [Related]
39. An O(N2) approximation for hydrodynamic interactions in Brownian dynamics simulations. Geyer T; Winter U J Chem Phys; 2009 Mar; 130(11):114905. PubMed ID: 19317564 [TBL] [Abstract][Full Text] [Related]
40. Molecular motions and ion diffusions of the room-temperature ionic liquid 1,2-dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)amide (DMPImTFSA) studied by 1H, 13C, and 19F NMR. Hayamizu K; Tsuzuki S; Seki S J Phys Chem A; 2008 Nov; 112(47):12027-36. PubMed ID: 18973321 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]