BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 17068299)

  • 1. The beat goes on: diastolic noise that just won't quit.
    Bers DM
    Circ Res; 2006 Oct; 99(9):921-3. PubMed ID: 17068299
    [No Abstract]   [Full Text] [Related]  

  • 2. Membrane potential fluctuations resulting from submembrane Ca2+ releases in rabbit sinoatrial nodal cells impart an exponential phase to the late diastolic depolarization that controls their chronotropic state.
    Bogdanov KY; Maltsev VA; Vinogradova TM; Lyashkov AE; Spurgeon HA; Stern MD; Lakatta EG
    Circ Res; 2006 Oct; 99(9):979-87. PubMed ID: 17008599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel mechanism of pacemaker control that depends on high levels of cAMP and PKA-dependent phosphorylation: a precisely controlled biological clock.
    Bridge JH; Davidson CJ; Savio-Galimberti E
    Circ Res; 2006 Mar; 98(4):437-9. PubMed ID: 16514072
    [No Abstract]   [Full Text] [Related]  

  • 4. Beat-to-beat cycle length variability of spontaneously beating guinea pig sinoatrial cells: relative contributions of the membrane and calcium clocks.
    Zaniboni M; Cacciani F; Lux RL
    PLoS One; 2014; 9(6):e100242. PubMed ID: 24940609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinguishing properties of cells from the myocardial sleeves of the pulmonary veins: a comparison of normal and abnormal pacemakers.
    Jones SA; Yamamoto M; Tellez JO; Billeter R; Boyett MR; Honjo H; Lancaster MK
    Circ Arrhythm Electrophysiol; 2008 Apr; 1(1):39-48. PubMed ID: 19808392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diastolic calcium release controls the beating rate of rabbit sinoatrial node cells: numerical modeling of the coupling process.
    Maltsev VA; Vinogradova TM; Bogdanov KY; Lakatta EG; Stern MD
    Biophys J; 2004 Apr; 86(4):2596-605. PubMed ID: 15041695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic basis of ischemia-induced bradycardia in the rabbit sinoatrial node.
    Du YM; Nathan RD
    J Mol Cell Cardiol; 2007 Feb; 42(2):315-25. PubMed ID: 17101146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comment on "limit cycle oscillations in pacemaker cells".
    Dokos S; Lovell NH
    IEEE Trans Biomed Eng; 2001 Apr; 48(4):499-500. PubMed ID: 11322539
    [No Abstract]   [Full Text] [Related]  

  • 9. Mechanisms of beat-to-beat regulation of cardiac pacemaker cell function by Ca²⁺ cycling dynamics.
    Yaniv Y; Stern MD; Lakatta EG; Maltsev VA
    Biophys J; 2013 Oct; 105(7):1551-61. PubMed ID: 24094396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diastolic release of calcium from the sarcoplasmic reticulum: a potential target for treating triggered arrhythmias and heart failure.
    Shannon TR; Lew WY
    J Am Coll Cardiol; 2009 May; 53(21):2006-8. PubMed ID: 19460615
    [No Abstract]   [Full Text] [Related]  

  • 11. Possible role of calcium release from the sarcoplasmic reticulum in pacemaking in guinea-pig sino-atrial node.
    Rigg L; Terrar DA
    Exp Physiol; 1996 Sep; 81(5):877-80. PubMed ID: 8889484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of sarcoplasmic reticulum Ca2+ leak on contractile activity of guinea pig heart myocytes depends in activity of sarcoplasmic reticulum Ca2+-ATPase and Na+/Ca2+ exchanger.
    Mackiewicz U; Lewartowski B
    J Physiol Pharmacol; 2008 Jun; 59(2):287-300. PubMed ID: 18622046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Burst emergence of intracellular Ca2+ waves evokes arrhythmogenic oscillatory depolarization via the Na+-Ca2+ exchanger: simultaneous confocal recording of membrane potential and intracellular Ca2+ in the heart.
    Fujiwara K; Tanaka H; Mani H; Nakagami T; Takamatsu T
    Circ Res; 2008 Aug; 103(5):509-18. PubMed ID: 18635824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial regulation of sarcoplasmic reticulum Ca2+ content in vascular smooth muscle cells.
    Poburko D; Liao CH; van Breemen C; Demaurex N
    Circ Res; 2009 Jan; 104(1):104-12. PubMed ID: 19023135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The effect of fluctuations of the electric potential on the activity of SAN cells].
    Aliev RR
    Biofizika; 2006; 51(6):1087-91. PubMed ID: 17175919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanisms underlying diastolic voltage oscillations in the sinoatrial node.
    Catanzaro JN; Nett MP; Rota M; Vassalle M
    J Electrocardiol; 2006 Jul; 39(3):342. PubMed ID: 16777524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase response characteristics of sinoatrial node cells.
    Tsalikakis DG; Zhang HG; Fotiadis DI; Kremmydas GP; Michalis ŁK
    Comput Biol Med; 2007 Jan; 37(1):8-20. PubMed ID: 16297376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative model for linking Na+/Ca2+ exchanger to SERCA during refilling of the sarcoplasmic reticulum to sustain [Ca2+] oscillations in vascular smooth muscle.
    Fameli N; van Breemen C; Kuo KH
    Cell Calcium; 2007 Dec; 42(6):565-75. PubMed ID: 17418403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Store-operated Ca2+ influx and expression of TRPC genes in mouse sinoatrial node.
    Ju YK; Chu Y; Chaulet H; Lai D; Gervasio OL; Graham RM; Cannell MB; Allen DG
    Circ Res; 2007 Jun; 100(11):1605-14. PubMed ID: 17478725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional morphology of the specialized tissues of the heart. (With plates 1-3).
    Challice CE
    Methods Achiev Exp Pathol; 1971; 5():121-72. PubMed ID: 5005462
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.