These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 17068553)
1. Statistical analysis of a database of absorption spectra of phytoplankton and pigment concentrations using self-organizing maps. Chazottes A; Bricaud A; Crépon M; Thiria S Appl Opt; 2006 Nov; 45(31):8102-15. PubMed ID: 17068553 [TBL] [Abstract][Full Text] [Related]
2. Statistical analysis of absorption spectra of phytoplankton and of pigment concentrations observed during three POMME cruises using a neural network clustering method. Chazottes A; Crépon M; Bricaud A; Ras J; Thiria S Appl Opt; 2007 Jun; 46(18):3790-9. PubMed ID: 17538676 [TBL] [Abstract][Full Text] [Related]
3. Reducing variability that is due to secondary pigments in the retrieval of chlorophyll a concentration from marine reflectance: a case study in the western equatorial Pacific Ocean. Gross L; Frouin R; Dupouy C; André JM; Thiria S Appl Opt; 2004 Jul; 43(20):4041-54. PubMed ID: 15285096 [TBL] [Abstract][Full Text] [Related]
4. Multivariate approach for the retrieval of phytoplankton size structure from measured light absorption spectra in the Mediterranean Sea (BOUSSOLE site). Organelli E; Bricaud A; Antoine D; Uitz J Appl Opt; 2013 Apr; 52(11):2257-73. PubMed ID: 23670753 [TBL] [Abstract][Full Text] [Related]
5. Retrieval of pigment concentrations and size structure of algal populations from their absorption spectra using multilayered perceptrons. Bricaud A; Mejia C; Blondeau-Patissier D; Claustre H; Crepon M; Thiria S Appl Opt; 2007 Mar; 46(8):1251-60. PubMed ID: 17318245 [TBL] [Abstract][Full Text] [Related]
6. Chlorophyll biomass in the global oceans: satellite retrieval using inherent optical properties. Lyon PE; Hoge FE; Wright CW; Swift RN; Yungel JK Appl Opt; 2004 Nov; 43(31):5886-92. PubMed ID: 15540447 [TBL] [Abstract][Full Text] [Related]
7. [Self-organizing neural networks for automatic detection and classification of contrast (media) enhancement of lesions in dynamic MR-mammography]. Vomweg TW; Teifke A; Kauczor HU; Achenbach T; Rieker O; Schreiber WG; Heitmann KR; Beier T; Thelen M Rofo; 2005 May; 177(5):703-13. PubMed ID: 15871086 [TBL] [Abstract][Full Text] [Related]
8. New adaptive color quantization method based on self-organizing maps. Chang CH; Xu P; Xiao R; Srikanthan T IEEE Trans Neural Netw; 2005 Jan; 16(1):237-49. PubMed ID: 15732403 [TBL] [Abstract][Full Text] [Related]
9. Model of phytoplankton absorption based on three size classes. Brewin RJ; Devred E; Sathyendranath S; Lavender SJ; Hardman-Mountford NJ Appl Opt; 2011 Aug; 50(22):4535-49. PubMed ID: 21833130 [TBL] [Abstract][Full Text] [Related]
10. A comparison between habituation and conscience mechanism in self-organizing maps. Rizzo R; Chella A IEEE Trans Neural Netw; 2006 May; 17(3):807-10. PubMed ID: 16722184 [TBL] [Abstract][Full Text] [Related]
12. O(log2 M) self-organizing map algorithm without learning of neighborhood vectors. Kusumoto H; Takefuji Y IEEE Trans Neural Netw; 2006 Nov; 17(6):1656-61. PubMed ID: 17131681 [TBL] [Abstract][Full Text] [Related]
13. Monitoring the formation of kernel-based topographic maps in a hybrid SOM-kMER model. Teh CS; Lim CP IEEE Trans Neural Netw; 2006 Sep; 17(5):1336-41. PubMed ID: 17001993 [TBL] [Abstract][Full Text] [Related]
14. Spectrophotometric Analysis of Pigments: A Critical Assessment of a High-Throughput Method for Analysis of Algal Pigment Mixtures by Spectral Deconvolution. Thrane JE; Kyle M; Striebel M; Haande S; Grung M; Rohrlack T; Andersen T PLoS One; 2015; 10(9):e0137645. PubMed ID: 26359659 [TBL] [Abstract][Full Text] [Related]
15. A novel kernel method for clustering. Camastra F; Verri A IEEE Trans Pattern Anal Mach Intell; 2005 May; 27(5):801-5. PubMed ID: 15875800 [TBL] [Abstract][Full Text] [Related]
16. Self-organizing and self-evolving neurons: a new neural network for optimization. Wu S; Chow TW IEEE Trans Neural Netw; 2007 Mar; 18(2):385-96. PubMed ID: 17385627 [TBL] [Abstract][Full Text] [Related]
17. Determination of phytoplankton composition using absorption spectra. Martínez-Guijarro R; Romero I; Pachés M; Del Río JG; Martí CM; Gil G; Ferrer-Riquelme A; Ferrer J Talanta; 2009 May; 78(3):814-9. PubMed ID: 19269434 [TBL] [Abstract][Full Text] [Related]
18. A rapid technique for classifying phytoplankton fluorescence spectra based on self-organizing maps. Aymerich IF; Piera J; Soria-Frisch A; Cros L Appl Spectrosc; 2009 Jun; 63(6):716-26. PubMed ID: 19531300 [TBL] [Abstract][Full Text] [Related]
19. Estimation of phytoplankton taxonomic groups in the Arctic Ocean using phytoplankton absorption properties: implication for ocean-color remote sensing. Zhang H; Devred E; Fujiwara A; Qiu Z; Liu X Opt Express; 2018 Nov; 26(24):32280-32301. PubMed ID: 30650690 [TBL] [Abstract][Full Text] [Related]