These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17068594)

  • 1. Experimental observation of photonic and polaritonic gaps in a silica opal.
    Högström H; Ribbing CG
    Appl Opt; 2006 Oct; 45(29):7617-21. PubMed ID: 17068594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polaritonic and photonic gap interactions in a two-dimensional photonic crystal.
    Rung A; Ribbing CG
    Phys Rev Lett; 2004 Mar; 92(12):123901. PubMed ID: 15089671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of polaritonic gaps in photonic crystals.
    Ribbing CG; Högström H; Rung A
    Appl Opt; 2006 Mar; 45(7):1575-82. PubMed ID: 16539266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.
    Xing H; Li J; Shi Y; Guo J; Wei J
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9440-5. PubMed ID: 26996608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical properties of inverted opal photonic band gap crystals with stacking disorder.
    Wang ZL; Chan CT; Zhang WY; Chen Z; Ming NB; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016612. PubMed ID: 12636630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculated photonic structures for infrared emittance control.
    Rung A; Ribbing CG
    Appl Opt; 2002 Jun; 41(16):3327-31. PubMed ID: 12064420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doped colloidal photonic crystal structure with refractive index chirping to the [111] crystallographic axis.
    Park JH; Choi WS; Koo HY; Hong JC; Kim DY
    Langmuir; 2006 Jan; 22(1):94-100. PubMed ID: 16378406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic bandgap properties of void-based body-centered-cubic photonic crystals in polymer.
    Zhou G; Ventura M; Gu M; Matthews A; Kivshar Y
    Opt Express; 2005 Jun; 13(12):4390-5. PubMed ID: 19495354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse opal photonic crystal of chalcogenide glass by solution processing.
    Kohoutek T; Orava J; Sawada T; Fudouzi H
    J Colloid Interface Sci; 2011 Jan; 353(2):454-8. PubMed ID: 21035816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-metallic three-dimensional photonic crystals with a large infrared bandgap.
    Fleming JG; Lin SY; El-Kady I; Biswas R; Ho KM
    Nature; 2002 May; 417(6884):52-5. PubMed ID: 11986662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment.
    Kang D; Maclennan JE; Clark NA; Zakhidov AA; Baughman RH
    Phys Rev Lett; 2001 Apr; 86(18):4052-5. PubMed ID: 11328093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Point defect geometries in inverted opal photonic crystals.
    Chan DL; Lidorikis E; Joannopoulos JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056602. PubMed ID: 16089663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse silica opal photonic crystals for optical sensing applications.
    Nishijima Y; Ueno K; Juodkazis S; Mizeikis V; Misawa H; Tanimura T; Maeda K
    Opt Express; 2007 Oct; 15(20):12979-88. PubMed ID: 19550567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonantly absorbing one-dimensional photonic crystals.
    Artoni M; La Rocca G; Bassani F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046604. PubMed ID: 16383551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic band gap enhancement in frequency-dependent dielectrics.
    Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046605. PubMed ID: 15600545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microassembly of semiconductor three-dimensional photonic crystals.
    Aoki K; Miyazaki HT; Hirayama H; Inoshita K; Baba T; Sakoda K; Shinya N; Aoyagi Y
    Nat Mater; 2003 Feb; 2(2):117-21. PubMed ID: 12612697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications.
    Deubel M; von Freymann G; Wegener M; Pereira S; Busch K; Soukoulis CM
    Nat Mater; 2004 Jul; 3(7):444-7. PubMed ID: 15195083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Silica Microspheres-Inspired by the Formation of Ice Crystals-With High Homogeneous Particle Sizes and Their Applications in Photonic Crystals.
    Chen X; Xu H; Hua C; Zhao J; Li Y; Song Y
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30340331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous omnidirectional zero-n¯ and zero-ϕeff non-Bragg gaps in metamaterial-polaritonic photonic superlattices.
    Moncada-Villa E; Mejía-Salazar JR; Granada JC
    Opt Lett; 2015 May; 40(10):2345-8. PubMed ID: 26393735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.