These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17068802)

  • 1. Theoretical studies on farnesyltransferase: the distances paradox explained.
    Sousa SF; Fernandes PA; Ramos MJ
    Proteins; 2007 Jan; 66(1):205-18. PubMed ID: 17068802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical studies on farnesyl transferase: evidence for thioether product coordination to the active-site zinc sphere.
    Sousa SF; Fernandes PA; Ramos MJ
    J Comput Chem; 2007 May; 28(7):1160-8. PubMed ID: 17342704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations on the critical states of the farnesyltransferase enzyme.
    Sousa SF; Fernandes PA; Ramos MJ
    Bioorg Med Chem; 2009 May; 17(9):3369-78. PubMed ID: 19369081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme flexibility and the catalytic mechanism of farnesyltransferase: targeting the relation.
    Sousa SF; Fernandes PA; Ramos MJ
    J Phys Chem B; 2008 Jul; 112(29):8681-91. PubMed ID: 18572907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Farnesyltransferase--new insights into the zinc-coordination sphere paradigm: evidence for a carboxylate-shift mechanism.
    Sousa SF; Fernandes PA; Ramos MJ
    Biophys J; 2005 Jan; 88(1):483-94. PubMed ID: 15501930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of protein farnesyltransferase to a geranylgeranyltransferase.
    Terry KL; Casey PJ; Beese LS
    Biochemistry; 2006 Aug; 45(32):9746-55. PubMed ID: 16893176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the mechanism of the farnesyltransferase enzyme.
    Sousa SF; Fernandes PA; Ramos MJ
    J Biol Inorg Chem; 2005 Jan; 10(1):3-10. PubMed ID: 15611883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cys(x)His(y)-Zn2+ interactions: thiol vs. thiolate coordination.
    Simonson T; Calimet N
    Proteins; 2002 Oct; 49(1):37-48. PubMed ID: 12211014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finding a needle in the haystack: computational modeling of Mg2+ binding in the active site of protein farnesyltransferase.
    Yang Y; Chakravorty DK; Merz KM
    Biochemistry; 2010 Nov; 49(44):9658-66. PubMed ID: 20923173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational studies of the farnesyltransferase ternary complex part I: substrate binding.
    Cui G; Wang B; Merz KM
    Biochemistry; 2005 Dec; 44(50):16513-23. PubMed ID: 16342942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The search for the mechanism of the reaction catalyzed by farnesyltransferase.
    Sousa SF; Fernandes PA; Ramos MJ
    Chemistry; 2009; 15(17):4243-7. PubMed ID: 19301336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiolate bridging and metal exchange in adducts of a zinc finger model and Pt(II) complexes: biomimetic studies of protein/Pt/DNA interactions.
    Almaraz E; de Paula QA; Liu Q; Reibenspies JH; Darensbourg MY; Farrell NP
    J Am Chem Soc; 2008 May; 130(19):6272-80. PubMed ID: 18422317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein farnesyl transferase target selectivity is dependent upon peptide stimulated product release.
    Troutman JM; Andres DA; Spielmann HP
    Biochemistry; 2007 Oct; 46(40):11299-309. PubMed ID: 17877368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization of a zinc high-affinity binding site in rhodopsin.
    Toledo D; Cordomí A; Proietti MG; Benfatto M; del Valle LJ; Pérez JJ; Garriga P; Sepulcre F
    Photochem Photobiol; 2009; 85(2):479-84. PubMed ID: 19222791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site.
    Brandt EG; Hellgren M; Brinck T; Bergman T; Edholm O
    Phys Chem Chem Phys; 2009 Feb; 11(6):975-83. PubMed ID: 19177216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc-thiolate complexes of the bis(pyrazolyl)(thioimidazolyl)hydroborate tripods for the modeling of thiolate alkylating enzymes.
    Ji M; Benkmil B; Vahrenkamp H
    Inorg Chem; 2005 May; 44(10):3518-23. PubMed ID: 15877434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical investigation of the reaction mechanism of the dinuclear zinc enzyme dihydroorotase.
    Liao RZ; Yu JG; Raushel FM; Himo F
    Chemistry; 2008; 14(14):4287-92. PubMed ID: 18366031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic features of the botulinum neurotoxin A light chain revealed by high resolution structure of an inhibitory peptide complex.
    Silvaggi NR; Wilson D; Tzipori S; Allen KN
    Biochemistry; 2008 May; 47(21):5736-45. PubMed ID: 18457419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the alpha-secondary kinetic isotope effect for the reaction catalyzed by mammalian protein farnesyltransferase.
    Pais JE; Bowers KE; Fierke CA
    J Am Chem Soc; 2006 Nov; 128(47):15086-7. PubMed ID: 17117849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational and conformational evaluation of FTase alternative substrates: insight into a novel enzyme binding pocket.
    Henriksen BS; Zahn TJ; Evanseck JD; Firestine SM; Gibbs RA
    J Chem Inf Model; 2005; 45(4):1047-52. PubMed ID: 16045300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.