BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 17068803)

  • 1. Critical evaluation of methods to incorporate entropy loss upon binding in high-throughput docking.
    Salaniwal S; Manas ES; Alvarez JC; Unwalla RJ
    Proteins; 2007 Feb; 66(2):422-35. PubMed ID: 17068803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards in silico lead optimization: scores from ensembles of protein/ligand conformations reliably correlate with biological activity.
    Popov VM; Yee WA; Anderson AC
    Proteins; 2007 Feb; 66(2):375-87. PubMed ID: 17078091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a MIP-based alignment and docking in computer-aided drug design.
    Barbany M; Gutiérrez-de-Terán H; Sanz F; Villà-Freixa J
    Proteins; 2004 Aug; 56(3):585-94. PubMed ID: 15229890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards understanding the mechanisms of molecular recognition by computer simulations of ligand-protein interactions.
    Verkhivker GM; Rejto PA; Bouzida D; Arthurs S; Colson AB; Freer ST; Gehlhaar DK; Larson V; Luty BA; Marrone T; Rose PW
    J Mol Recognit; 1999; 12(6):371-89. PubMed ID: 10611647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular docking with ligand attached water molecules.
    Lie MA; Thomsen R; Pedersen CN; Schiøtt B; Christensen MH
    J Chem Inf Model; 2011 Apr; 51(4):909-17. PubMed ID: 21452852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully automated molecular mechanics based induced fit protein-ligand docking method.
    Koska J; Spassov VZ; Maynard AJ; Yan L; Austin N; Flook PK; Venkatachalam CM
    J Chem Inf Model; 2008 Oct; 48(10):1965-73. PubMed ID: 18816046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New and fast statistical-thermodynamic method for computation of protein-ligand binding entropy substantially improves docking accuracy.
    Ruvinsky AM; Kozintsev AV
    J Comput Chem; 2005 Aug; 26(11):1089-95. PubMed ID: 15929088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA.
    Rastelli G; Del Rio A; Degliesposti G; Sgobba M
    J Comput Chem; 2010 Mar; 31(4):797-810. PubMed ID: 19569205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accounting for loop flexibility during protein-protein docking.
    Bastard K; Prévost C; Zacharias M
    Proteins; 2006 Mar; 62(4):956-69. PubMed ID: 16372349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacophore-based molecular docking to account for ligand flexibility.
    Joseph-McCarthy D; Thomas BE; Belmarsh M; Moustakas D; Alvarez JC
    Proteins; 2003 May; 51(2):172-88. PubMed ID: 12660987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational constraint in protein ligand design and the inconsistency of binding entropy.
    Udugamasooriya DG; Spaller MR
    Biopolymers; 2008 Aug; 89(8):653-67. PubMed ID: 18335423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are automated molecular dynamics simulations and binding free energy calculations realistic tools in lead optimization? An evaluation of the linear interaction energy (LIE) method.
    Stjernschantz E; Marelius J; Medina C; Jacobsson M; Vermeulen NP; Oostenbrink C
    J Chem Inf Model; 2006; 46(5):1972-83. PubMed ID: 16995728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of binding entropy in the refinement of protein-ligand docking predictions: analysis based on the use of 11 scoring functions.
    Ruvinsky AM
    J Comput Chem; 2007 Jun; 28(8):1364-72. PubMed ID: 17342720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated docking of highly flexible ligands by genetic algorithms: a critical assessment.
    Cecchini M; Kolb P; Majeux N; Caflisch A
    J Comput Chem; 2004 Feb; 25(3):412-22. PubMed ID: 14696075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct estimation of entropy loss due to reduced translational and rotational motions upon molecular binding.
    Lu B; Wong CF
    Biopolymers; 2005 Dec; 79(5):277-85. PubMed ID: 16078192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calorimetric studies of ligand binding in R67 dihydrofolate reductase.
    Jackson M; Chopra S; Smiley RD; Maynord PO; Rosowsky A; London RE; Levy L; Kalman TI; Howell EE
    Biochemistry; 2005 Sep; 44(37):12420-33. PubMed ID: 16156655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexibility and conformational entropy in protein-protein binding.
    Grünberg R; Nilges M; Leckner J
    Structure; 2006 Apr; 14(4):683-93. PubMed ID: 16615910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico screening against wild-type and mutant Plasmodium falciparum dihydrofolate reductase.
    Fogel GB; Cheung M; Pittman E; Hecht D
    J Mol Graph Model; 2008 Apr; 26(7):1145-52. PubMed ID: 18037315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.