BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 1706923)

  • 21. Fusogenic activity of hepadnavirus peptides corresponding to sequences downstream of the putative cleavage site.
    Rodríguez-Crespo I; Núñez E; Yélamos B; Gómez-Gutiérrez J; Albar JP; Peterson DL; Gavilanes F
    Virology; 1999 Aug; 261(1):133-42. PubMed ID: 10441561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Immunochemical comparison of tryptophanyl-tRNA-synthetases].
    Sheĭnker VSh; Favorova OO; Rokhlin OV
    Mol Biol (Mosk); 1978; 12(3):565-71. PubMed ID: 78439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of D-amino acid substitution in a mucin 2 epitope on mucin-specific monoclonal antibody recognition.
    Uray K; Kajtár J; Vass E; Price MR; Hollósi M; Hudecz F
    Arch Biochem Biophys; 2000 Jun; 378(1):25-32. PubMed ID: 10871040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An alternative splicing modifies the C-terminal end of tryptophanyl-tRNA synthetase in murine embryonic stem cells.
    Pajot B; Sarger C; Bonnet J; Garret M
    J Mol Biol; 1994 Sep; 242(4):599-603. PubMed ID: 7932716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational preferences of a peptide corresponding to the major antigenic determinant of foot-and-mouth disease virus: implications for peptide-vaccine approaches.
    de Prat-Gay G
    Arch Biochem Biophys; 1997 May; 341(2):360-9. PubMed ID: 9169027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of structure in antibody cross-reactivity between peptides and folded proteins.
    Craig L; Sanschagrin PC; Rozek A; Lackie S; Kuhn LA; Scott JK
    J Mol Biol; 1998 Aug; 281(1):183-201. PubMed ID: 9680484
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural characterization and optimization of antibody-selected phage library mimotopes of an antigen associated with autoimmune recurrent thrombosis.
    Sem DS; Baker BL; Victoria EJ; Jones DS; Marquis D; Yu L; Parks J; Coutts SM
    Biochemistry; 1998 Nov; 37(46):16069-81. PubMed ID: 9819200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using capillary electrophoresis to study methylation effect on RNA-peptide interaction.
    Mucha P; Szyk A; Rekowski P; Agris PF
    Acta Biochim Pol; 2003; 50(3):857-64. PubMed ID: 14515166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A general approach to the localization of antigenic determinants of a linear type in proteins of unknown primary structure.
    Beresten SF; Rubikaite BI; Kisselev LL
    J Immunol Methods; 1988 Oct; 113(2):247-54. PubMed ID: 2459255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular and cellular studies of tryptophanyl-tRNA synthetases using monoclonal antibodies. Remarkable variations in the content of tryptophanyl-tRNA synthetase in the pancreas of different mammals.
    Favorova OO; Zargarova TA; Rukosuyev VS; Beresten SF; Kisselev LL
    Eur J Biochem; 1989 Oct; 184(3):583-8. PubMed ID: 2806241
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anticooperative binding of L-tryptophan to tryptophanyl-tRNA synthetase from beef pancreas. Study at equilibrium by dialysis and changes in spectroscopic properties.
    Graves PV; Mazat JP; Juguelin H; Labouesse J; Labouesse B
    Eur J Biochem; 1979 Jun; 96(3):509-18. PubMed ID: 467418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peptide/antibody recognition: synthetic peptides derived from the E. coli tryptophan synthase beta 2 subunit interact with high affinity with an anti-beta 2 monoclonal antibody.
    Larvor MP; Djavadi-Ohaniance L; Friguet B; Baleux F; Goldberg ME
    Mol Immunol; 1991; 28(4-5):523-31. PubMed ID: 2062325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nucleoside triphosphatase activity associated with the N-terminal domain of mammalian tryptophanyl-tRNA synthetase.
    Kovaleva G; Nikitushkina T; Kisselev L
    FEBS Lett; 1993 Dec; 335(2):198-202. PubMed ID: 8253196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular aspects of the inactivation of tryptophanyl transfer ribonucleic acid synthetase by N-ethylmaleimide.
    Iborra F; Gros C; Labouesse B; Labouesse J
    J Biol Chem; 1975 Sep; 250(17):6666-71. PubMed ID: 239947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthetic peptide model of an essential region of an aminoacyl-tRNA synthetase.
    Park SJ; Miller WT; Schimmel P
    Biochemistry; 1990 Oct; 29(39):9212-8. PubMed ID: 2271589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gamma interferon potently induces tryptophanyl-tRNA synthetase expression in human keratinocytes.
    Reano A; Richard MH; Denoroy L; Viac J; Benedetto JP; Schmitt D
    J Invest Dermatol; 1993 Jun; 100(6):775-9. PubMed ID: 8496617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elucidation of the core residues of an epitope using membrane-based combinatorial peptide libraries.
    Gao B; Esnouf MP
    J Biol Chem; 1996 Oct; 271(40):24634-8. PubMed ID: 8798729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards assignment of secondary structures by anti-peptide antibodies. Specificity of the immune response to a beta-turn.
    Schulze-Gahmen U; Prinz H; Glatter U; Beyreuther K
    EMBO J; 1985 Jul; 4(7):1731-7. PubMed ID: 2411545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel self-assembling peptide with UV-responsive properties.
    Wei R; Jin CC; Quan J; Nie HL; Zhu LM
    Biopolymers; 2014 Mar; 101(3):272-8. PubMed ID: 23828220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tryptophanyl circular dichroism in a special hemoglobin.
    Wollmer A; Buse G
    FEBS Lett; 1971 Sep; 16(4):307-310. PubMed ID: 11945968
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.