These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17069280)

  • 1. Ultrasonic characterization of human cancellous bone using the Biot theory: inverse problem.
    Sebaa N; Fellah ZE; Fellah M; Ogam E; Wirgin A; Mitri FG; Depollier C; Lauriks W
    J Acoust Soc Am; 2006 Oct; 120(4):1816-24. PubMed ID: 17069280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the Biot model to ultrasound in bone: inverse problem.
    Sebaa N; Fellah ZA; Fellah M; Ogam E; Mitri FG; Depollier C; Lauriks W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1516-23. PubMed ID: 18986941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic wave propagation in human cancellous bone: application of Biot theory.
    Fellah ZE; Chapelon JY; Berger S; Lauriks W; Depollier C
    J Acoust Soc Am; 2004 Jul; 116(1):61-73. PubMed ID: 15295965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the biot model to ultrasound in bone: direct problem.
    Fellah ZA; Sebaa N; Fellah M; Mitri FG; Ogam E; Lauriks W; Depollier C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1508-15. PubMed ID: 18986940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of critical and viscous frequencies for Biot theory in cancellous bone.
    Hughes ER; Leighton TG; Petley GW; White PR; Chivers RC
    Ultrasonics; 2003 Jul; 41(5):365-8. PubMed ID: 12788218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of an anisotropic tortuosity in a biot model of ultrasonic propagation in cancellous bone.
    Hughes ER; Leighton TG; White PR; Petley GW
    J Acoust Soc Am; 2007 Jan; 121(1):568-74. PubMed ID: 17297810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic propagation in cancellous bone: a new stratified model.
    Hughes ER; Leighton TG; Petley GW; White PR
    Ultrasound Med Biol; 1999 Jun; 25(5):811-21. PubMed ID: 10414898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.
    Lee KI; Hughes ER; Humphrey VF; Leighton TG; Choi MJ
    Phys Med Biol; 2007 Jan; 52(1):59-73. PubMed ID: 17183128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Ultrasonic wave propagation characteristics of cancellous bone].
    Otani T
    Clin Calcium; 2004 Dec; 14(12):69-75. PubMed ID: 15577177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The non-linear relationship between BUA and porosity in cancellous bone.
    Hodgskinson R; Njeh CF; Whitehead MA; Langton CM
    Phys Med Biol; 1996 Nov; 41(11):2411-20. PubMed ID: 8938035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictions of the modified Biot-Attenborough model for the dependence of phase velocity on porosity in cancellous bone.
    Lee KI; Humphrey VF; Leighton TG; Yoon SW
    Ultrasonics; 2007 Nov; 46(4):323-30. PubMed ID: 17573089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic wave propagation in porous media: determination of acoustic parameters and high frequency limit of the classical models.
    Leclaire P; Kelders L; Lauriks W; Glorieux C; Thoen J
    Stud Health Technol Inform; 1997; 40():139-55. PubMed ID: 10168875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Biot's theory to ultrasonic characterization of human cancellous bones: determination of structural, material, and mechanical properties.
    Pakula M; Padilla F; Laugier P; Kaczmarek M
    J Acoust Soc Am; 2008 Apr; 123(4):2415-23. PubMed ID: 18397044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.
    Nagatani Y; Mizuno K; Saeki T; Matsukawa M; Sakaguchi T; Hosoi H
    Ultrasonics; 2008 Nov; 48(6-7):607-12. PubMed ID: 18589470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelet decomposition of transmitted ultrasound wave through a 1-D muscle-bone system.
    Buchanan JL; Gilbert RP; Ou MJ
    J Biomech; 2011 Jan; 44(2):352-8. PubMed ID: 21092969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast characterization of two ultrasound longitudinal waves in cancellous bone using an adaptive beamforming technique.
    Taki H; Nagatani Y; Matsukawa M; Mizuno K; Sato T
    J Acoust Soc Am; 2015 Apr; 137(4):1683-92. PubMed ID: 25920821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography.
    Hoffman JJ; Nelson AM; Holland MR; Miller JG
    J Acoust Soc Am; 2012 Sep; 132(3):1830-7. PubMed ID: 22978910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods.
    Hosokawa A
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1782-9. PubMed ID: 16240836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.