These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17069280)

  • 21. Inverse problems in cancellous bone: estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory.
    Anderson CC; Bauer AQ; Holland MR; Pakula M; Laugier P; Bretthorst GL; Miller JG
    J Acoust Soc Am; 2010 Nov; 128(5):2940-8. PubMed ID: 21110589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of acoustic characteristics predicted by Biot's theory and the modified Biot-Attenborough model in cancellous bone.
    Lee KI; Yoon SW
    J Biomech; 2006; 39(2):364-8. PubMed ID: 16321640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasonic wave propagation in stereo-lithographical bone replicas.
    Aygün H; Attenborough K; Lauriks W; Langton CM
    J Acoust Soc Am; 2010 Jun; 127(6):3781-9. PubMed ID: 20550276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone.
    Anderson CC; Marutyan KR; Holland MR; Wear KA; Miller JG
    J Acoust Soc Am; 2008 Sep; 124(3):1781-9. PubMed ID: 19045668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The speed of sound through trabecular bone predicted by Biot theory.
    Yoon YJ; Chung JP; Bae CS; Han SY
    J Biomech; 2012 Feb; 45(4):716-8. PubMed ID: 22244093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anomalous negative dispersion in bone can result from the interference of fast and slow waves.
    Marutyan KR; Holland MR; Miller JG
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):EL55-61. PubMed ID: 17139755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of porosity distribution in the propagation direction on ultrasound waves through cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1320-8. PubMed ID: 20529708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic wave propagation in bovine cancellous bone: application of the Modified Biot-Attenborough model.
    Lee KI; Roh HS; Yoon SW
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2284-93. PubMed ID: 14587625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrasonic wave propagation in bovine cancellous bone.
    Hosokawa A; Otani T
    J Acoust Soc Am; 1997 Jan; 101(1):558-62. PubMed ID: 9000743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biot theory: a review of its application to ultrasound propagation through cancellous bone.
    Haire TJ; Langton CM
    Bone; 1999 Apr; 24(4):291-5. PubMed ID: 10221540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. What kind of waves are measured in trabecular bone?
    Pakula M
    Ultrasonics; 2022 Jul; 123():106692. PubMed ID: 35176689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bayesian inference of human bone sample properties using ultrasonic reflected signals.
    Roncen R; Fellah ZEA; Ogam E
    J Acoust Soc Am; 2020 Dec; 148(6):3797. PubMed ID: 33379902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bayesian inference of a human bone and biomaterials using ultrasonic transmitted signals.
    Roncen R; Fellah ZEA; Piot E; Ogam E
    J Acoust Soc Am; 2019 Sep; 146(3):1629. PubMed ID: 31590502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of charge density on the velocity and attenuation of ultrasound waves in human cancellous bone.
    Yoon YJ
    J Biomech; 2018 Oct; 79():54-57. PubMed ID: 30122518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic diagnosis for porous medium with circular cylindrical pores.
    Roh HS; Yoon SW
    J Acoust Soc Am; 2004 Mar; 115(3):1114-24. PubMed ID: 15058332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Propagation of two longitudinal waves in human cancellous bone: an in vitro study.
    Mizuno K; Matsukawa M; Otani T; Laugier P; Padilla F
    J Acoust Soc Am; 2009 May; 125(5):3460-6. PubMed ID: 19425685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro acoustic waves propagation in human and bovine cancellous bone.
    Cardoso L; Teboul F; Sedel L; Oddou C; Meunier A
    J Bone Miner Res; 2003 Oct; 18(10):1803-12. PubMed ID: 14584891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The interaction of ultrasound with cancellous bone.
    McKelvie ML; Palmer SB
    Phys Med Biol; 1991 Oct; 36(10):1331-40. PubMed ID: 1745661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical Analysis of Ultrasound Backscattered Waves in Cancellous Bone Using a Finite-Difference Time-Domain Method: Isolation of the Backscattered Waves From Various Ranges of Bone Depths.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1201-10. PubMed ID: 26263571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multichannel instantaneous frequency analysis of ultrasound propagating in cancellous bone.
    Nagatani Y; Tachibana RO
    J Acoust Soc Am; 2014 Mar; 135(3):1197-206. PubMed ID: 24606262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.