BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 17069318)

  • 1. Acoustic roles of the laryngeal cavity in vocal tract resonance.
    Takemoto H; Adachi S; Kitamura T; Mokhtari P; Honda K
    J Acoust Soc Am; 2006 Oct; 120(4):2228-38. PubMed ID: 17069318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclicity of laryngeal cavity resonance due to vocal fold vibration.
    Kitamura T; Takemoto H; Adachi S; Mokhtari P; Honda K
    J Acoust Soc Am; 2006 Oct; 120(4):2239-49. PubMed ID: 17069319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing.
    Mainka A; Poznyakovskiy A; Platzek I; Fleischer M; Sundberg J; Mürbe D
    PLoS One; 2015; 10(7):e0132241. PubMed ID: 26186691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic analysis of the vocal tract during vowel production by finite-difference time-domain method.
    Takemoto H; Mokhtari P; Kitamura T
    J Acoust Soc Am; 2010 Dec; 128(6):3724-38. PubMed ID: 21218904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A magnetic resonance imaging-based articulatory and acoustic study of "retroflex" and "bunched" American English /r/.
    Zhou X; Espy-Wilson CY; Boyce S; Tiede M; Holland C; Choe A
    J Acoust Soc Am; 2008 Jun; 123(6):4466-81. PubMed ID: 18537397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vocal tract changes caused by phonation into a tube: a case study using computer tomography and finite-element modeling.
    Vampola T; Laukkanen AM; Horácek J; Svec JG
    J Acoust Soc Am; 2011 Jan; 129(1):310-5. PubMed ID: 21303012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship of vocal tract shape to three voice qualities.
    Story BH; Titze IR; Hoffman EA
    J Acoust Soc Am; 2001 Apr; 109(4):1651-67. PubMed ID: 11325134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of acoustic interspeaker variability based on the concept of formant-cavity affiliation.
    Apostol L; Perrier P; Bailly G
    J Acoust Soc Am; 2004 Jan; 115(1):337-51. PubMed ID: 14759026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualisation of hypopharyngeal cavities and vocal-tract acoustic modelling.
    Honda K; Kitamura T; Takemoto H; Adachi S; Mokhtari P; Takano S; Nota Y; Hirata H; Fujimoto I; Shimada Y; Masaki S; Fujita S; Dang J
    Comput Methods Biomech Biomed Engin; 2010 Aug; 13(4):443-53. PubMed ID: 20635261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production.
    Zhang Z
    J Acoust Soc Am; 2023 Oct; 154(4):2462-2475. PubMed ID: 37855666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Speech: A Restricted Use of the Mammalian Larynx.
    Titze IR
    J Voice; 2017 Mar; 31(2):135-141. PubMed ID: 27397113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vocal tract and glottal function during and after vocal exercising with resonance tube and straw.
    Guzman M; Laukkanen AM; Krupa P; Horáček J; Švec JG; Geneid A
    J Voice; 2013 Jul; 27(4):523.e19-34. PubMed ID: 23683806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an Acoustic Simulation Method during Phonation of the Japanese Vowel /a/ by the Boundary Element Method.
    Shiraishi M; Mishima K; Umeda H
    J Voice; 2021 Jul; 35(4):530-544. PubMed ID: 31889645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002.
    Story BH
    J Acoust Soc Am; 2008 Jan; 123(1):327-35. PubMed ID: 18177162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed imaging of vocal fold vibrations and larynx movements within vocalizations of different vowels.
    Maurer D; Hess M; Gross M
    Ann Otol Rhinol Laryngol; 1996 Dec; 105(12):975-81. PubMed ID: 8973285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Case-study magnetic resonance imaging and acoustic investigation of the effects of vocal warm-up on two voice professionals.
    Laukkanen AM; Horáček J; Havlík R
    Logoped Phoniatr Vocol; 2012 Jul; 37(2):75-82. PubMed ID: 22394011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glissando: laryngeal motorics and acoustics.
    Hoppe U; Rosanowski F; Döllinger M; Lohscheller J; Schuster M; Eysholdt U
    J Voice; 2003 Sep; 17(3):370-6. PubMed ID: 14513959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of vocal tract formants in singing and nonperiodic phonation.
    Miller DG; Sulter AM; Schutte HK; Wolf RF
    J Voice; 1997 Mar; 11(1):1-11. PubMed ID: 9075171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.