BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 17069481)

  • 1. The frontal cortex and exogenous attentional orienting.
    Snyder JJ; Chatterjee A
    J Cogn Neurosci; 2006 Nov; 18(11):1913-23. PubMed ID: 17069481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural correlates of spatial and non-spatial inhibition of return (IOR) in attentional orienting.
    Zhou X; Chen Q
    Neuropsychologia; 2008 Sep; 46(11):2766-75. PubMed ID: 18597795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal and impaired reflexive orienting of attention after central nonpredictive cues.
    Bonato M; Priftis K; Marenzi R; Zorzi M
    J Cogn Neurosci; 2009 Apr; 21(4):745-59. PubMed ID: 18578597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural networks underlying endogenous and exogenous visual-spatial orienting.
    Mayer AR; Dorflinger JM; Rao SM; Seidenberg M
    Neuroimage; 2004 Oct; 23(2):534-41. PubMed ID: 15488402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential frontal activation during exogenous and endogenous orientation of visuospatial attention. A near-infrared spectroscopy study.
    Takahashi M; Ikegami M
    Neuropsychobiology; 2008; 58(2):55-64. PubMed ID: 18832860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control.
    Thiel CM; Fink GR
    Neuroscience; 2008 Mar; 152(2):381-90. PubMed ID: 18272290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired orienting of attention in left unilateral neglect: a componential analysis.
    Siéroff E; Decaix C; Chokron S; Bartolomeo P
    Neuropsychology; 2007 Jan; 21(1):94-113. PubMed ID: 17201533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous and exogenous attention shifts are mediated by the same large-scale neural network.
    Peelen MV; Heslenfeld DJ; Theeuwes J
    Neuroimage; 2004 Jun; 22(2):822-30. PubMed ID: 15193611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans.
    Hornak J; O'Doherty J; Bramham J; Rolls ET; Morris RG; Bullock PR; Polkey CE
    J Cogn Neurosci; 2004 Apr; 16(3):463-78. PubMed ID: 15072681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic attention orienting by social and symbolic cues activates different neural networks: an fMRI study.
    Hietanen JK; Nummenmaa L; Nyman MJ; Parkkola R; Hämäläinen H
    Neuroimage; 2006 Oct; 33(1):406-13. PubMed ID: 16949306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociable roles of prefrontal subregions in self-ordered working memory performance.
    Chase HW; Clark L; Sahakian BJ; Bullmore ET; Robbins TW
    Neuropsychologia; 2008 Sep; 46(11):2650-61. PubMed ID: 18556028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orienting of spatial attention in Huntington's Disease.
    Couette M; Bachoud-Levi AC; Brugieres P; Sieroff E; Bartolomeo P
    Neuropsychologia; 2008 Apr; 46(5):1391-400. PubMed ID: 18242648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct neural correlates for resolving stroop conflict at inhibited and noninhibited locations in inhibition of return.
    Chen Q; Wei P; Zhou X
    J Cogn Neurosci; 2006 Nov; 18(11):1937-46. PubMed ID: 17069483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues.
    Smith DT; Jackson SR; Rorden C
    Neuropsychologia; 2005; 43(9):1288-96. PubMed ID: 15949513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Right prefrontal brain activation due to Stroop interference is altered in attention-deficit hyperactivity disorder - A functional near-infrared spectroscopy study.
    Jourdan Moser S; Cutini S; Weber P; Schroeter ML
    Psychiatry Res; 2009 Sep; 173(3):190-5. PubMed ID: 19664910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attentional control parameters following parietal-lobe damage: evidence from normal subjects.
    Vecera SP; Flevaris AV
    Neuropsychologia; 2005; 43(8):1189-203. PubMed ID: 15817177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of lesions of the amygdala and prefrontal cortex on recognizing facial expressions of complex emotions.
    Shaw P; Bramham J; Lawrence EJ; Morris R; Baron-Cohen S; David AS
    J Cogn Neurosci; 2005 Sep; 17(9):1410-9. PubMed ID: 16197694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cognitive control of attention in the human brain: insights from orienting attention to mental representations.
    Lepsien J; Nobre AC
    Brain Res; 2006 Aug; 1105(1):20-31. PubMed ID: 16729979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sources of top-down control in visual search.
    Weidner R; Krummenacher J; Reimann B; Müller HJ; Fink GR
    J Cogn Neurosci; 2009 Nov; 21(11):2100-13. PubMed ID: 19199412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An event-related fMRI study of exogenous orienting: supporting evidence for the cortical basis of inhibition of return?
    Mayer AR; Seidenberg M; Dorflinger JM; Rao SM
    J Cogn Neurosci; 2004 Sep; 16(7):1262-71. PubMed ID: 15453978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.