BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 17069853)

  • 1. The kinetics of nucleation and growth of sickle cell hemoglobin fibers.
    Galkin O; Nagel RL; Vekilov PG
    J Mol Biol; 2007 Jan; 365(2):425-39. PubMed ID: 17069853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the beta4Thr-beta73Asp hydrogen bond in HbS polymer and domain formation from multinucleate-containing clusters.
    Adachi K; Ding M; Surrey S
    Biochemistry; 2008 May; 47(19):5441-9. PubMed ID: 18419131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexibility and nucleation in sickle hemoglobin.
    Ivanova M; Jasuja R; Krasnosselskaia L; Josephs R; Wang Z; Ding M; Horiuchi K; Adachi K; Ferrone FA
    J Mol Biol; 2001 Dec; 314(4):851-61. PubMed ID: 11734002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-step mechanism of homogeneous nucleation of sickle cell hemoglobin polymers.
    Galkin O; Pan W; Filobelo L; Hirsch RE; Nagel RL; Vekilov PG
    Biophys J; 2007 Aug; 93(3):902-13. PubMed ID: 17449671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of homogeneous nucleation of polymers of sickle cell anemia hemoglobin in deoxy state.
    Galkin O; Vekilov PG
    J Mol Biol; 2004 Feb; 336(1):43-59. PubMed ID: 14741202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of pH on instability and aggregation of sickle hemoglobin solutions.
    Manno M; San Biagio PL; Palma MU
    Proteins; 2004 Apr; 55(1):169-76. PubMed ID: 14997550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of the mechanisms of slow religation to sickle cell hemoglobin polymers following laser photolysis.
    Shapiro DB; Esquerra RM; Goldbeck RA; Ballas SK; Mohandas N; Kliger DS
    J Mol Biol; 1996 Jun; 259(5):947-56. PubMed ID: 8683597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sickle-cell haemoglobin polymerization: is it the primary pathogenic event of sickle-cell anaemia?
    Vekilov PG
    Br J Haematol; 2007 Oct; 139(2):173-84. PubMed ID: 17897293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metastable mesoscopic clusters in solutions of sickle-cell hemoglobin.
    Pan W; Galkin O; Filobelo L; Nagel RL; Vekilov PG
    Biophys J; 2007 Jan; 92(1):267-77. PubMed ID: 17040989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The double nucleation model for sickle cell haemoglobin polymerization: full integration and comparison with experimental data.
    Medkour T; Ferrone F; Galactéros F; Hannaert P
    Acta Biotheor; 2008 Jun; 56(1-2):103-22. PubMed ID: 18247134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromechanics of isolated sickle cell hemoglobin fibers: bending moduli and persistence lengths.
    Wang JC; Turner MS; Agarwal G; Kwong S; Josephs R; Ferrone FA; Briehl RW
    J Mol Biol; 2002 Jan; 315(4):601-12. PubMed ID: 11812133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymerization of deoxy-sickle cell hemoglobin in high-phosphate buffer.
    Wang Z; Kishchenko G; Chen Y; Josephs R
    J Struct Biol; 2000 Sep; 131(3):197-209. PubMed ID: 11052892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Hb A variant (beta73 Asp-->Leu) disrupts Hb S polymerization by a novel mechanism.
    Adachi K; Ding M; Surrey S; Rotter M; Aprelev A; Zakharov M; Weng W; Ferrone FA
    J Mol Biol; 2006 Sep; 362(3):528-38. PubMed ID: 16926024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of T-R conformational change on sickle-cell hemoglobin interactions and aggregation.
    Vaiana SM; Rotter MA; Emanuele A; Ferrone FA; Palma-Vittorelli MB
    Proteins; 2005 Feb; 58(2):426-38. PubMed ID: 15573374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of erythrocyte membranes on the nucleation of sickle hemoglobin.
    Aprelev A; Rotter MA; Etzion Z; Bookchin RM; Briehl RW; Ferrone FA
    Biophys J; 2005 Apr; 88(4):2815-22. PubMed ID: 15653736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleation and polymerization of sickle hemoglobin with Leu beta 88 substituted by Ala.
    Cao Z; Liao D; Mirchev R; Martin de Llano JJ; Himanen JP; Manning JM; Ferrone FA
    J Mol Biol; 1997 Feb; 265(5):580-9. PubMed ID: 9048950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the intermolecular contacts within sickle hemoglobin fibers: effect of site-specific substitutions, fiber pitch, and double-strand disorder.
    Watowich SJ; Gross LJ; Josephs R
    J Struct Biol; 1993; 111(3):161-79. PubMed ID: 8003379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free heme in micromolar amounts enhances the attraction between sickle cell hemoglobin molecules.
    Pan W; Uzunova VV; Vekilov PG
    Biopolymers; 2009 Dec; 91(12):1108-16. PubMed ID: 19322821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular crowding limits the role of fetal hemoglobin in therapy for sickle cell disease.
    Rotter M; Aprelev A; Adachi K; Ferrone FA
    J Mol Biol; 2005 Apr; 347(5):1015-23. PubMed ID: 15784260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free heme and the polymerization of sickle cell hemoglobin.
    Uzunova VV; Pan W; Galkin O; Vekilov PG
    Biophys J; 2010 Sep; 99(6):1976-85. PubMed ID: 20858444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.