These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 17069856)
1. The case for an error minimizing set of coding amino acids. Torabi N; Goodarzi H; Shateri Najafabadi H J Theor Biol; 2007 Feb; 244(4):737-44. PubMed ID: 17069856 [TBL] [Abstract][Full Text] [Related]
2. Amino acid biogenesis, evolution of the genetic code and aminoacyl-tRNA synthetases. Klipcan L; Safro M J Theor Biol; 2004 Jun; 228(3):389-96. PubMed ID: 15135037 [TBL] [Abstract][Full Text] [Related]
3. On the classes of aminoacyl-tRNA synthetases and the error minimization in the genetic code. Cavalcanti AR; Neto BD; Ferreira R J Theor Biol; 2000 May; 204(1):15-20. PubMed ID: 10772845 [TBL] [Abstract][Full Text] [Related]
4. Transfer RNA: a dancer between charging and mis-charging for protein biosynthesis. Zhou X; Wang E Sci China Life Sci; 2013 Oct; 56(10):921-32. PubMed ID: 23982864 [TBL] [Abstract][Full Text] [Related]
5. On the 28-gon symmetry inherent in the genetic code intertwined with aminoacyl-tRNA synthetases--the Lucas series. Yang CM Bull Math Biol; 2004 Sep; 66(5):1241-57. PubMed ID: 15294424 [TBL] [Abstract][Full Text] [Related]
7. The impact of including tRNA content on the optimality of the genetic code. Goodarzi H; Najafabadi HS; Nejad HA; Torabi N Bull Math Biol; 2005 Nov; 67(6):1355-68. PubMed ID: 16005951 [TBL] [Abstract][Full Text] [Related]
8. A tRNA aminoacylation system for non-natural amino acids based on a programmable ribozyme. Bessho Y; Hodgson DR; Suga H Nat Biotechnol; 2002 Jul; 20(7):723-8. PubMed ID: 12089559 [TBL] [Abstract][Full Text] [Related]
9. [Functional and evolutionary aspects of the aminoacyl-tRNA synthetases]. Silva González E; Mosqueira Pérez Salazar FG Rev Latinoam Microbiol; 1991; 33(1):87-101. PubMed ID: 1727028 [TBL] [Abstract][Full Text] [Related]
10. On the optimality of the genetic code, with the consideration of termination codons. Goodarzi H; Nejad HA; Torabi N Biosystems; 2004 Nov; 77(1-3):163-73. PubMed ID: 15527955 [TBL] [Abstract][Full Text] [Related]
11. The fidelity of the translation of the genetic code. Sankaranarayanan R; Moras D Acta Biochim Pol; 2001; 48(2):323-35. PubMed ID: 11732604 [TBL] [Abstract][Full Text] [Related]
12. [RNA-dependent recruitment of new amino acids to the genetic code]. Nureki O Tanpakushitsu Kakusan Koso; 2007 May; 52(5):415-26. PubMed ID: 17491322 [No Abstract] [Full Text] [Related]
13. Genomics and the evolution of aminoacyl-tRNA synthesis. Ruan B; Ahel I; Ambrogelly A; Becker HD; Bunjun S; Feng L; Tumbula-Hansen D; Ibba M; Korencic D; Kobayashi H; Jacquin-Becker C; Mejlhede N; Min B; Raczniak G; Rinehart J; Stathopoulos C; Li T; Söll D Acta Biochim Pol; 2001; 48(2):313-21. PubMed ID: 11732603 [TBL] [Abstract][Full Text] [Related]
16. Reassignment of sense codons in vivo. Link AJ; Tirrell DA Methods; 2005 Jul; 36(3):291-8. PubMed ID: 16076455 [TBL] [Abstract][Full Text] [Related]
18. Translation of both complementary strands might govern early evolution of the genetic code. Rodin AS; Rodin SN In Silico Biol; 2007; 7(3):309-18. PubMed ID: 18415979 [TBL] [Abstract][Full Text] [Related]
19. Origin and Evolution of the Universal Genetic Code. Koonin EV; Novozhilov AS Annu Rev Genet; 2017 Nov; 51():45-62. PubMed ID: 28853922 [TBL] [Abstract][Full Text] [Related]
20. Mammalian aminoacyl-tRNA synthetases: cell signaling functions of the protein translation machinery. Brown MV; Reader JS; Tzima E Vascul Pharmacol; 2010; 52(1-2):21-6. PubMed ID: 19962454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]