These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 17070010)

  • 21. Mean-driven and fluctuation-driven persistent activity in recurrent networks.
    Renart A; Moreno-Bote R; Wang XJ; Parga N
    Neural Comput; 2007 Jan; 19(1):1-46. PubMed ID: 17134316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dopaminergic neuromodulation of semantic priming in a cortical network model.
    Lavigne F; Darmon N
    Neuropsychologia; 2008 Nov; 46(13):3074-87. PubMed ID: 18647615
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combining spatial and feature-based attention within the receptive field of MT neurons.
    Patzwahl DR; Treue S
    Vision Res; 2009 Jun; 49(10):1188-93. PubMed ID: 19362573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the top-down influences on the lateral interactions in the visual cortex.
    Setić M; Domijan D
    Brain Res; 2008 Aug; 1225():86-101. PubMed ID: 18620341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How optimal stimuli for sensory neurons are constrained by network architecture.
    DiMattina C; Zhang K
    Neural Comput; 2008 Mar; 20(3):668-708. PubMed ID: 18045019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attention increases neural selectivity in the human lateral occipital complex.
    Murray SO; Wojciulik E
    Nat Neurosci; 2004 Jan; 7(1):70-4. PubMed ID: 14647291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feedback interactions between neuronal pointers and maps for attentional processing.
    Hahnloser R; Douglas RJ; Mahowald M; Hepp K
    Nat Neurosci; 1999 Aug; 2(8):746-52. PubMed ID: 10412065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human attentional networks: a connectionist model.
    Wang H; Fan J
    J Cogn Neurosci; 2007 Oct; 19(10):1678-89. PubMed ID: 18271741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-varying cortical activations related to visual-tactile cross-modal links in spatial selective attention.
    Kida T; Inui K; Wasaka T; Akatsuka K; Tanaka E; Kakigi R
    J Neurophysiol; 2007 May; 97(5):3585-96. PubMed ID: 17360823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Instructed delay discharge in primary and secondary somatosensory cortex within the context of a selective attention task.
    Meftah el-M; Bourgeon S; Chapman CE
    J Neurophysiol; 2009 May; 101(5):2649-67. PubMed ID: 19225170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synchrony: a neural correlate of somatosensory attention.
    Roy A; Steinmetz PN; Hsiao SS; Johnson KO; Niebur E
    J Neurophysiol; 2007 Sep; 98(3):1645-61. PubMed ID: 17596415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polychronization: computation with spikes.
    Izhikevich EM
    Neural Comput; 2006 Feb; 18(2):245-82. PubMed ID: 16378515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An ongoing subthreshold neuronal state established through dynamic coassembling of cortical cells.
    Hoshino O
    Neural Comput; 2008 Dec; 20(12):3055-86. PubMed ID: 18533816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex.
    Franco L; Rolls ET; Aggelopoulos NC; Jerez JM
    Biol Cybern; 2007 Jun; 96(6):547-60. PubMed ID: 17410377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hebbian learning in a model with dynamic rate-coded neurons: an alternative to the generative model approach for learning receptive fields from natural scenes.
    Hamker FH; Wiltschut J
    Network; 2007 Sep; 18(3):249-66. PubMed ID: 17926194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation patterns in visual cortex reveal receptive field size-dependent attentional modulation.
    Rijpkema M; van Aalderen SI; Schwarzbach JV; Verstraten FA
    Brain Res; 2008 Jan; 1189():90-6. PubMed ID: 18062939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Right hemisphere dominance for auditory attention and its modulation by eye position: an event related fMRI study.
    Petit L; Simon G; Joliot M; Andersson F; Bertin T; Zago L; Mellet E; Tzourio-Mazoyer N
    Restor Neurol Neurosci; 2007; 25(3-4):211-25. PubMed ID: 17943000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortical basis of communication: local computation, coordination, attention.
    Alexandre F
    Neural Netw; 2009 Mar; 22(2):126-33. PubMed ID: 19217253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Attention induces synchronization-based response gain in steady-state visual evoked potentials.
    Kim YJ; Grabowecky M; Paller KA; Muthu K; Suzuki S
    Nat Neurosci; 2007 Jan; 10(1):117-25. PubMed ID: 17173045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective population rate coding: a possible computational role of gamma oscillations in selective attention.
    Masuda N
    Neural Comput; 2009 Dec; 21(12):3335-62. PubMed ID: 19686062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.