These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 17070038)

  • 1. Removal of phthalate esters by alpha-cyclodextrin-linked chitosan bead.
    Chen CY; Chen CC; Chung YC
    Bioresour Technol; 2007 Sep; 98(13):2578-83. PubMed ID: 17070038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of phthalate esters from aqueous solutions by chitosan bead.
    Chen CY; Chung YC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(2):235-48. PubMed ID: 16423728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive adsorption of a phthalate esters mixture by chitosan bead and alpha-cyclodextrin-linked chitosan bead.
    Chung YC; Chen CY
    Environ Technol; 2009 Dec; 30(13):1343-50. PubMed ID: 20088198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of phthalate esters from water using immobilized lipase on chitosan beads.
    Dulazi AA; Liu H
    Environ Technol; 2011 Oct; 32(13-14):1443-51. PubMed ID: 22329134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclodextrins and chitosan derivatives in sublingual delivery of low solubility peptides: A study using cyclosporin A, alpha-cyclodextrin and quaternary chitosan N-betainate.
    Mannila J; Järvinen K; Holappa J; Matilainen L; Auriola S; Jarho P
    Int J Pharm; 2009 Oct; 381(1):19-24. PubMed ID: 19632311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of molybdate-impregnated chitosan beads (MICB) in terms of arsenic removal from water and the application of a MICB-packed column to remove arsenic from wastewater.
    Chen CY; Chang TH; Kuo JT; Chen YF; Chung YC
    Bioresour Technol; 2008 Nov; 99(16):7487-94. PubMed ID: 18359225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan.
    Wang G; Liu J; Wang X; Xie Z; Deng N
    J Hazard Mater; 2009 Sep; 168(2-3):1053-8. PubMed ID: 19342166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilized chitosan as biosorbent for the removal of Cd(II), Cr(III) and Cr(VI) from aqueous solutions.
    Copello GJ; Varela F; Vivot RM; Díaz LE
    Bioresour Technol; 2008 Sep; 99(14):6538-44. PubMed ID: 18166453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-linked quaternary chitosan as an adsorbent for the removal of the reactive dye from aqueous solutions.
    Rosa S; Laranjeira MC; Riela HG; Fávere VT
    J Hazard Mater; 2008 Jun; 155(1-2):253-60. PubMed ID: 18180101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal and recovery of Hg(II) from aqueous solution using chitosan-coated cotton fibers.
    Qu R; Sun C; Ma F; Zhang Y; Ji C; Xu Q; Wang C; Chen H
    J Hazard Mater; 2009 Aug; 167(1-3):717-27. PubMed ID: 19201531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of Pb(II) from aqueous solution on chitosan/TiO(2) hybrid film.
    Tao Y; Ye L; Pan J; Wang Y; Tang B
    J Hazard Mater; 2009 Jan; 161(2-3):718-22. PubMed ID: 18495341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis.
    Annadurai G; Ling LY; Lee JF
    J Hazard Mater; 2008 Mar; 152(1):337-46. PubMed ID: 17686579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan.
    Li JM; Meng XG; Hu CW; Du J
    Bioresour Technol; 2009 Feb; 100(3):1168-73. PubMed ID: 18930394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of malachite green on chitosan bead.
    Bekçi Z; Ozveri C; Seki Y; Yurdakoç K
    J Hazard Mater; 2008 Jun; 154(1-3):254-61. PubMed ID: 18022317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption and desorption characteristics of mercury(II) ions using aminated chitosan bead.
    Jeon C; Park KH
    Water Res; 2005 Oct; 39(16):3938-44. PubMed ID: 16129473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of XAD-2 adsorbent for the enrichment of trace levels of phthalate esters in hydroalcoholic food beverages and analysis by gas chromatography coupled with flame ionization and ion-trap mass spectrometry detectors.
    Cinelli G; Avino P; Notardonato I; Centola A; Russo MV
    Food Chem; 2014 Mar; 146():181-7. PubMed ID: 24176330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of carboxylated chitosan and its adsorption properties for cadmium (II), lead (II) and copper (II) from aqueous solutions.
    Lv KL; Du YL; Wang CM
    Water Sci Technol; 2009; 60(2):467-74. PubMed ID: 19633389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect.
    Rangel-Mendez JR; Monroy-Zepeda R; Leyva-Ramos E; Diaz-Flores PE; Shirai K
    J Hazard Mater; 2009 Feb; 162(1):503-11. PubMed ID: 18585858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave induced beta-cyclodextrin modification of chitosan for lead sorption.
    Sharma AK; Mishra AK
    Int J Biol Macromol; 2010 Oct; 47(3):410-9. PubMed ID: 20603143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan-calcium alginate blended beads.
    Nadavala SK; Swayampakula K; Boddu VM; Abburi K
    J Hazard Mater; 2009 Feb; 162(1):482-9. PubMed ID: 18573601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.