BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 17070123)

  • 1. Surface elastic properties of Ti alloys modified for medical implants: a force spectroscopy study.
    Munuera C; Matzelle TR; Kruse N; López MF; Gutiérrez A; Jiménez JA; Ocal C
    Acta Biomater; 2007 Jan; 3(1):113-9. PubMed ID: 17070123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomechanical properties of surface-modified titanium alloys for biomedical applications.
    Cáceres D; Munuera C; Ocal C; Jiménez JA; Gutiérrez A; López MF
    Acta Biomater; 2008 Sep; 4(5):1545-52. PubMed ID: 18499544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro biocompatibility evaluation of surface-modified titanium alloys.
    Treves C; Martinesi M; Stio M; Gutiérrez A; Jiménez JA; López MF
    J Biomed Mater Res A; 2010 Mar; 92(4):1623-34. PubMed ID: 19437430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of spatial design and thermal oxidation on apatite formation on Ti-15Zr-4Ta-4Nb alloy.
    Sugino A; Ohtsuki C; Tsuru K; Hayakawa S; Nakano T; Okazaki Y; Osaka A
    Acta Biomater; 2009 Jan; 5(1):298-304. PubMed ID: 18706879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production, microstructural characterization and mechanical properties of as-cast Ti-10Mo-xNb alloys.
    Gabriel SB; Nunes CA; Soares Gde A
    Artif Organs; 2008 Apr; 32(4):299-304. PubMed ID: 18370944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys.
    Lin CW; Ju CP; Chern Lin JH
    Biomaterials; 2005 Jun; 26(16):2899-907. PubMed ID: 15603785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification by alkali and heat treatments in titanium alloys.
    Lee BH; Do Kim Y; Shin JH; Hwan Lee K
    J Biomed Mater Res; 2002 Sep; 61(3):466-73. PubMed ID: 12115472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo studies of alkali- and heat-treated Ti-6Al-7Nb and Ti-5Al-2Nb-1Ta alloys for orthopedic implants.
    Tamilselvi S; Raghavendran HB; Srinivasan P; Rajendran N
    J Biomed Mater Res A; 2009 Aug; 90(2):380-6. PubMed ID: 18523948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting graded young modulus values of Ti alloys modified by ion implantation.
    Hassan MH
    Med J Malaysia; 2004 May; 59 Suppl B():164-5. PubMed ID: 15468869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology and chemical characterization of Ti surfaces modified for biomedical applications.
    Lewandowska M; Roguska A; Pisarek M; Polak B; Janik-Czachor M; Kurzydłowski KJ
    Biomol Eng; 2007 Nov; 24(5):438-42. PubMed ID: 17768086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional Ti-(Ca,Zr)-(C,N,O,P) films for load-bearing implants.
    Shtansky DV; Gloushankova NA; Bashkova IA; Kharitonova MA; Moizhess TG; Sheveiko AN; Kiryukhantsev-Korneev FV; Petrzhik MI; Levashov EA
    Biomaterials; 2006 Jul; 27(19):3519-31. PubMed ID: 16530825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conjoint corrosion and wear in titanium alloys.
    Khan MA; Williams RL; Williams DF
    Biomaterials; 1999 Apr; 20(8):765-72. PubMed ID: 10353659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term microvascular response of striated muscle to cp-Ti, Ti-6Al-4V, and Ti-6Al-7Nb.
    Pennekamp PH; Gessmann J; Diedrich O; Burian B; Wimmer MA; Frauchiger VM; Kraft CN
    J Orthop Res; 2006 Mar; 24(3):531-40. PubMed ID: 16463365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media.
    Leinenbach C; Eifler D
    Biomaterials; 2006 Mar; 27(8):1200-8. PubMed ID: 16140373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions.
    Khan MA; Williams RL; Williams DF
    Biomaterials; 1999 Apr; 20(7):631-7. PubMed ID: 10208405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ observation of surface oxide layers on medical grade Ni-Ti alloy during straining.
    Undisz A; Schrempel F; Wesch W; Rettenmayr M
    J Biomed Mater Res A; 2009 Mar; 88(4):1000-9. PubMed ID: 18384174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microvascular response of striated muscle to common arthroplasty-alloys: A comparative in vivo study with CoCrMo, Ti-6Al-4V, and Ti-6Al-7Nb.
    Kraft CN; Burian B; Diedrich O; Gessmann J; Wimmer MA; Pennekamp PH
    J Biomed Mater Res A; 2005 Oct; 75(1):31-40. PubMed ID: 16078208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro apatite formation on chemically treated (P/M) Ti-13Nb-13Zr.
    Müller FA; Bottino MC; Müller L; Henriques VA; Lohbauer U; Bressiani AH; Bressiani JC
    Dent Mater; 2008 Jan; 24(1):50-6. PubMed ID: 17442387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of surface treatment on the bioactivity of nickel-titanium.
    Chrzanowski W; Neel EA; Armitage DA; Knowles JC
    Acta Biomater; 2008 Nov; 4(6):1969-84. PubMed ID: 18565807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.