These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 1707070)

  • 21. Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents.
    Strausfeld NJ; Okamura JY
    J Comp Neurol; 2007 Jan; 500(1):166-88. PubMed ID: 17099891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies.
    Douglass JK; Strausfeld NJ
    Microsc Res Tech; 2003 Oct; 62(2):132-50. PubMed ID: 12966499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei.
    Strausfeld NJ; Weltzien P; Barth FG
    J Comp Neurol; 1993 Feb; 328(1):63-75. PubMed ID: 7679123
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical neuroanatomy of the fly's movement detection pathway.
    Sinakevitch I; Strausfeld NJ
    J Comp Neurol; 2004 Jan; 468(1):6-23. PubMed ID: 14648688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The functional role of octopaminergic neurons in insect motor behavior.
    Pflüger HJ; Duch C
    Acta Biol Hung; 2000; 51(2-4):343-8. PubMed ID: 11034158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
    Karmeier K; van Hateren JH; Kern R; Egelhaaf M
    J Neurophysiol; 2006 Sep; 96(3):1602-14. PubMed ID: 16687623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural organization of male-specific visual neurons in calliphorid optic lobes.
    Strausfeld NJ
    J Comp Physiol A; 1991 Oct; 169(4):379-93. PubMed ID: 1723430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The spatial, temporal and contrast properties of expansion and rotation flight optomotor responses in Drosophila.
    Duistermars BJ; Chow DM; Condro M; Frye MA
    J Exp Biol; 2007 Sep; 210(Pt 18):3218-27. PubMed ID: 17766299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motoneurons of the flight power muscles of the blowfly Calliphora erythrocephala: structures and mutual dye coupling.
    Schlurmann M; Hausen K
    J Comp Neurol; 2007 Jan; 500(3):448-64. PubMed ID: 17120285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural circuits mediating visual flight control in flies. II. Separation of two control systems by microsurgical brain lesions.
    Hausen K; Wehrhahn C
    J Neurosci; 1990 Jan; 10(1):351-60. PubMed ID: 2299398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensorimotor transformation: from visual responses to motor commands.
    Krapp HG
    Curr Biol; 2010 Mar; 20(5):R236-9. PubMed ID: 20219173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Array of Descending Visual Interneurons Encoding Self-Motion in Drosophila.
    Suver MP; Huda A; Iwasaki N; Safarik S; Dickinson MH
    J Neurosci; 2016 Nov; 36(46):11768-11780. PubMed ID: 27852783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.
    Lindemann JP; Weiss H; Möller R; Egelhaaf M
    Biol Cybern; 2008 Mar; 98(3):213-27. PubMed ID: 18180948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organization and significance of neurons that detect change of visual depth in the hawk moth Manduca sexta.
    Wicklein M; Strausfeld NJ
    J Comp Neurol; 2000 Aug; 424(2):356-76. PubMed ID: 10906708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The relevance of neural architecture to visual performance: phylogenetic conservation and variation in Dipteran visual systems.
    Buschbeck EK; Strausfeld NJ
    J Comp Neurol; 1997 Jul; 383(3):282-304. PubMed ID: 9205042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long descending motor tract axons and their control of neck and axial muscles.
    Shinoda Y; Sugiuchi Y; Izawa Y; Hata Y
    Prog Brain Res; 2006; 151():527-63. PubMed ID: 16221600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuronal basis for parallel visual processing in the fly.
    Strausfeld NJ; Lee JK
    Vis Neurosci; 1991; 7(1-2):13-33. PubMed ID: 1931797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural control mechanisms of the pheromone-triggered programmed behavior in male silkmoths revealed by double-labeling of descending interneurons and a motor neuron.
    Wada S; Kanzaki R
    J Comp Neurol; 2005 Apr; 484(2):168-82. PubMed ID: 15736224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast-scale adaptive changes of directional tuning in fly tangential cells are explained by a static nonlinearity.
    Neri P
    J Exp Biol; 2007 Sep; 210(Pt 18):3199-208. PubMed ID: 17766297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Local and global motion preferences in descending neurons of the fly.
    Wertz A; Haag J; Borst A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Dec; 195(12):1107-20. PubMed ID: 19830435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.