BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 17070766)

  • 1. Rapid hydrogen sulfide consumption by Tetrahymena pyriformis and its implications for the origin of mitochondria.
    Searcy DG
    Eur J Protistol; 2006 Sep; 42(3):221-31. PubMed ID: 17070766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen sulfide consumption measured at low steady state concentrations using a sulfidostat.
    Searcy DG; Peterson MA
    Anal Biochem; 2004 Jan; 324(2):269-75. PubMed ID: 14690691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the herbicide 2,4,5 trichlorophenoxy acetic acid (245T) on the growth and metabolism of Tetrahymena pyriformis.
    Silberstein GB; Hooper AB
    J Cell Physiol; 1975 Apr; 85(2 Pt 1):331-8. PubMed ID: 804490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chloramphenicol on replication of mitochondria in Tetrahymena.
    Gleason FK; Ooka MP; Cunningham WP; Hooper AB
    J Cell Physiol; 1975 Feb; 85(1):59-72. PubMed ID: 803271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite.
    Jackson MR; Melideo SL; Jorns MS
    Biochemistry; 2012 Aug; 51(34):6804-15. PubMed ID: 22852582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of chloramphenicol on the mitochondrial respiratory chain in the wild strain and in a cytoplasmic chloramphenicol-resistant mutant of Tetrahymena pyriformis.
    Perasso R; Curgy JJ; Stelly N; Andre J
    Mol Cell Biol; 1982 Jun; 2(6):715-9. PubMed ID: 14582167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial depolarization following hydrogen sulfide exposure in erythrocytes from a sulfide-tolerant marine invertebrate.
    Julian D; April KL; Patel S; Stein JR; Wohlgemuth SE
    J Exp Biol; 2005 Nov; 208(Pt 21):4109-22. PubMed ID: 16244170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine to hydrogen sulfide and the role of hydrogen sulfide in S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine-induced mitochondrial toxicity.
    Banki K; Elfarra AA; Lash LH; Anders MW
    Biochem Biophys Res Commun; 1986 Jul; 138(2):707-13. PubMed ID: 3741429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of H2S in mammalian cells and mitochondria.
    Abou-Hamdan A; Guedouari-Bounihi H; Lenoir V; Andriamihaja M; Blachier F; Bouillaud F
    Methods Enzymol; 2015; 554():201-28. PubMed ID: 25725524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single eubacterial origin of eukaryotic sulfide:quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times.
    Theissen U; Hoffmeister M; Grieshaber M; Martin W
    Mol Biol Evol; 2003 Sep; 20(9):1564-74. PubMed ID: 12832624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfide, the first inorganic substrate for human cells.
    Goubern M; Andriamihaja M; Nübel T; Blachier F; Bouillaud F
    FASEB J; 2007 Jun; 21(8):1699-706. PubMed ID: 17314140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes.
    Lagoutte E; Mimoun S; Andriamihaja M; Chaumontet C; Blachier F; Bouillaud F
    Biochim Biophys Acta; 2010 Aug; 1797(8):1500-11. PubMed ID: 20398623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen Sulfide Oxidation: Adaptive Changes in Mitochondria of SW480 Colorectal Cancer Cells upon Exposure to Hypoxia.
    Malagrinò F; Zuhra K; Mascolo L; Mastronicola D; Vicente JB; Forte E; Giuffrè A
    Oxid Med Cell Longev; 2019; 2019():8102936. PubMed ID: 30838088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and physiological responses of Tetrahymena pyriformis during adaptation to high glycerol concentrations.
    Gounaris EG; Bardopoulou H; Kotinis KK
    Microbiologica; 1990 Jul; 13(3):239-46. PubMed ID: 2125685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of the mitochondrial inner membrane in synchronous cultures of Tetrahymena pyriformis: an examination of phospholipid accumulation.
    Hemmingsen SM; Young PG
    J Cell Physiol; 1983 Jul; 116(1):57-66. PubMed ID: 6406523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of hydrogen sulfide by human liver mitochondria.
    Helmy N; Prip-Buus C; Vons C; Lenoir V; Abou-Hamdan A; Guedouari-Bounihi H; Lombès A; Bouillaud F
    Nitric Oxide; 2014 Sep; 41():105-12. PubMed ID: 24928562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luminal sulfide and large intestine mucosa: friend or foe?
    Blachier F; Davila AM; Mimoun S; Benetti PH; Atanasiu C; Andriamihaja M; Benamouzig R; Bouillaud F; Tomé D
    Amino Acids; 2010 Jul; 39(2):335-47. PubMed ID: 20020161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The binding of diazepam in the mitochondria of Tetrahymena pyriformis as detected by quantitative high resolution autoradiography.
    Fülöp AK; Csaba G
    Biosci Rep; 1993 Feb; 13(1):19-25. PubMed ID: 8392393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Lipids and synthesis of Tetrahymena pyriformis membrane (author's transl)].
    Nozawa Y
    Tanpakushitsu Kakusan Koso; 1973 Jul; 18(7):719-34. PubMed ID: 4200379
    [No Abstract]   [Full Text] [Related]  

  • 20. Cytotoxicity of synthetic fuel products on Tetrahymena pyriformis. I. Phenol.
    Schultz TW; Dumont JN
    J Protozool; 1977 Feb; 24(1):164-72. PubMed ID: 405480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.